Dark Matter Decay and Cosmic Rays

Christoph Weniger

Deutsches Elektronen Synchrotron DESY

in collaboration with A. Ibarra, A. Ringwald and D. Tran see arXiv:0903.3625 (accepted by JCAP) and arXiv:0906.1571

5th Patras Workshop on Axions, WIMPs and WISPs

14 September 2009

I. Introduction

Evidence for Dark Matter

There is substantial evidence for the existence of nonbaryonic dark matter

Dark Matter shows up gravitationally in

- Rotation curves of Galaxies
- X-Ray emission of intracluster gas
- Gravitational Lensing
- CMB + LSS

"Bullet" Cluster

[Clowe et al. (2006)]

Properties of Dark Matter

Dark Matter is

- non-baryonic: only weakly or super-weakly interacting with baryonic matter
- cold (or warm): non-relativistic at onset of structure formation
- cosmologically long-lived or stable

A convincing dark matter candidate should be embedded in a consistent **thermal history** of the Universe, *i.e.*

- possess a mechanism that explains the observed relic density
- be compatible with
 - Big Bang Nucleosynthesis
 - Baryogenesis (e.g. Leptogenesis)

-

Stable Dark Matter

Standard scenario: WIMPs

- Some particle is stabilized by a symmetry*
- If it is weakly interacting it can have naturally the right relic abundance to be Dark Matter, provided its mass lies in the GeV - TeV range

==> Stable DM

* Without this symmetry, the particle would have a lifetime around ~O(10⁻⁶ s)

Unstable DM: Symmetry Violation

Symmetry can be **violated** at some high scale

- DM becomes unstable
- In case of e.g. dim-6 operators
 the lifetime is roughly given by

$$\tau_{\rm DM} \sim \mathcal{O}(10^{26} \text{ s}) \left(\frac{10^{15} \text{ GeV}}{M^*}\right)^4 \left(\frac{M_{\rm DM}}{100 \text{ GeV}}\right)^5$$

e.g. GUT scale relics, hidden vector dark matter

==> Decay on cosmological time scales

Unstable DM: superWIMPs

e.g. Gravitino with mild R-parity violation, Sterile Neutrino

Dark Matter can be superweakly interacting.

- In this case, DM is naturally long-lived
- Depending on the couplings, it can have a cosmological lifetime

$$\tau_{\rm DM} \gg 10^{17} {
m s}$$

==> Decay on cosmological time scales

Dark Matter Candidates

There exists a large number Dark Matter candidates. They include

Stable

 Neutralinos, Lightest KK particles, Axions, Sneutrinos, Gravitinos, WIMPzillas,...

Unstable

- Gravitino with mild R-parity violation
- Sterile Neutrinos
- Hidden Gauginos
- Right-handed sneutrinos
- Hidden U(1)' gauge bosons
- Hidden sector Mesons or Baryons
- Neutralinos with tiny R-parity violation
- •

Overview

- II.) Cosmic Rays from Dark Matter Decay
- III.) Models for Decaying Dark Matter
 - Sterile Neutrinos
 - Gravitino with R-parity violation
- IV.) PAMELA & Fermi electron/positron data
 - Interpretation in terms of decaying dark matter
 - Prospects
- V.) Conclusions

II. Cosmic Rays from Dark Matter Decay

Cosmic Rays from Dark Matter Decay

Decay of DM can be observable in Cosmic Ray Fluxes:

Photons X- and Gamma-Rays	*	Propagation trivial (light follows geodesics, galaxy transparent) Detection of sources possible
Positrons	*	Excess observed in the GeV – TeV range Diffusive propagation ==> Flux isotropized ==> Source identification difficult
Anti-protons	*	Background estimates compatible with measurements Diffusive propagation
Anti-deuterons	*	Very low background expected compared to typical signals from DM decay Diffusive propagation

[Moore, B. (2005)]

Photons: Signal Profile

The Dark Matter Gamma-Ray signal is proportional to the **column density** of the Dark Matter distribution*

$$F = \frac{\Omega_{\text{FoV}}}{4\pi} \frac{N_{\gamma}(E)}{\tau_{\text{DM}} M_{\text{DM}}} \int_{\text{l.o.s.}} dr \, \rho_{\text{DM}}(r)$$

- Signal from decay is much less peaked than the signal from annihilation
 No need to look at e.g. the galactic center (where the background is large)
- Signal does not depend on details of dark matter distribution

^{*}as long as characteristic DM scale larger than Field of View; for small redshifts

Photons: Targets for Decaying DM Searches

At low energies ~ O(10 keV): Look for Extragalactic Sources $\mathrm{Flux} \sim \mathcal{O}(10^7) \frac{\mathrm{photons}}{\mathrm{year} \cdot \mathrm{m}^2 \cdot (1^\circ)^2}$

- Different extended objects (like satellite galaxies, galaxy clusters)
 possess similar column densities and give comparable fluxes
- Fluxes from different extragalactic objects only a few times larger than the flux from the Milky Way Halo [Boyarsky et al. (2008)]

At high energies ~ O(10 GeV): Look for the Milky Way Halo

Flux
$$\sim \mathcal{O}(1) \frac{\text{photons}}{\text{year} \cdot \text{m}^2 \cdot (1^{\circ})^2}$$

- Very small fluxes at high energies
- Observation of point sources can only give marginally better results

Photons: The Halo Component

At high latitudes the extragalactic background dominates the diffuse flux.

Cosmic Rays from Dark Matter Decay

Decay of DM can be observable in Cosmic Ray Fluxes:

Photons X- and Gamma-Rays	*	Propagation trivial (light follows geodesics, galaxy transparent) Detection of sources possible
Positrons	*	Excess observed in the GeV – TeV range Diffusive propagation ==> Flux isotropized ==> No direct Source detection possible
Anti-protons	*	Background estimates compatible with measurements Diffusive propagation
Anti-deuterons	*	Very low background expected compared to typical signals from DM decay Diffusive propagation

PAMELA and Fermi LAT Data

PAMELA and Fermi LAT detected deviations from the

astrophysical expectations

[Adriani et al. (2008), Abdo et al. (2009)]

- Standard propagation models do not predict rise in positron fraction as observed by PAMELA
- The Fermi results for the electron+positron flux, together with the H.E.S.S. results, point to an excess up to ~ 1 - 2 TeV
- Interpretation difficult since observations measure only the local flux ==> difficult to distinguish source distribution

Propagation of Charged Particles in the Galaxy

Pulsar Interpretation of positron excess

The observed excesses may be explained by e⁺/e⁻ emission of nearby pulsars.

■ If fraction of spin-down energy that goes into e⁺/e⁻ emission and spectral cutoffs are adjusted appropriately, the observations can be reproduced

III. Models for Decaying Dark Matter

Sterile Neutrino Dark Matter

$$+$$
 3 ν_{R}

Sterile Neutrinos as DM

Standard Model + three right-handed neutrinos.

With [Dodelson and Widrow (1994), Shi and Fuller (1999)]

- Majorana mass terms around 1 keV 100 GeV
- appropriately chosen Yukawa couplings

this model can explain different beyond SM phenomena:

- Neutrino Oscillations,
- Dark Matter,
 - which is identified with the lightest sterile neutrino, N_{I} ,
- Baryon Asymmetry of the Universe,
 - produced via CP-violating oscillation of active neutrinos and sphaleron processes at energies above 100 GeV,
- and can accomodate Inflation & Dark Energy

[see e.g. Boyarsky, Ruchayskiy and Shaposhnikov (2008)]

Sterile Neutrino as DM: Gamma Ray Line

The lightest sterile neutrino, N_{1} , is Dark Matter

- Long DM lifetime implies very **small Yukawa couplings**, $Y < O(10^{-11})$ for N_{1} , and hence a small Majorana mass ~ O(keV)
- N_j is produced due to mixing with active neutrinos in the early Universe (either resonantely or non-resonantely)
- X-ray observations can detect sterile neutrino dark matter due to two-body decay into active neutrino + photon:

- Line searches have been performed for
 - M31, galaxy clusters, dwarf spheroidal galaxies
 - Extra-galactic X-ray background

Sterile Neutrinos as DM: Constraints

[A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov (2008)]

Gravitino Dark Matter

Gravitino Dark Matter: NLSP bottleneck

MSSM + Gravitino (+ right-handed neutrinos).

- Gravitino is LSP and Dark Matter
- It is produced
 - during reheating
 - in the late decay of NLSPs
- If baryon asymmetry is generated by Leptogenesis

==> lower bound on gravitino mass
$$m_{3/2} > O(5 \text{ GeV})$$

This gives a lower bound on the NLSP lifetime

$$\tau_{NLSP} > O(10^5 \text{ s})$$

==> NLSP decays during BBN

see [Buchmueller, Covi, Hamaguchi, Ibarra and Yanagida (2007)]

Gravitino Dark Matter

Problem: Long-lived NLSPs in general spoil BBN

Solution: Get rid of NLSP before BBN by allowing mild violation of R-parity

Gravitino Dark Matter with R-parity Violation

R-parity can be violated by a term $\sim \lambda_{ijk} L_i L_j e_k^c$

BBN and Leptogenesis give lower and upper bound on size of breaking

$$10^{-14} \lesssim \lambda \lesssim 10^{-7}$$

 As a consequence the gravitino becomes <u>unstable</u> with a long lifetime (due to Planck-mass suppression and smallness of λ)

$$\tau_{3/2} \gtrsim \mathcal{O}(10^{23} \text{ s})$$

The gravitino decays via the following decay channels:

(Branching ratios become model-independent for large gravitino masses)

$$\psi_{3/2} \to \gamma \nu$$
 $\psi_{3/2} \to Z^0 \nu$ $\psi_{3/2} \to W^{\pm} \ell^{\mp}$ $\psi_{3/2} \to h^0 \nu$

Decay products are potentially visible in Cosmic Rays

Note: naturalness suggests an **upper bound** m_{3/2} < 600 GeV [Buchmueller, Endo and Shindou (2008)]

e⁺/e⁻ Flux from Gravitino DM

Comparison with Cosmic Ray positron and electron data

- Decaying Gravitinos are unlikely the cause for the PAMELA/Fermi excesses, since this requires TeV masses.
- However: lower bounds on life-time can be extracted from data

[Buchmueller, Ibarra, Shindou, Takayama and Tran (2009)]

Gamma Ray Flux from Gravitino DM

- The Fermi/PAMELA observations still allow an observable impact on the extragalactic gamma-ray background
- Prominent feature is a gamma-ray line at half of the gravitino mass

IV. PAMELA & Fermi

Las Pamelas

Enrico Fermi

PAMELA/Fermi excess from DM Decay

Model-independent analysis in terms of Decaying DM,

concentrating on two- and three-body decay channels

see [lbarra, Tran and CW, arXiv:0906.1571]

- Taking standard propagation model (analytical) [Donato et al. (2004)]
- Using Pythia Monte-Carlo for decay & fragmentation calculation
- Using Galprop "Model 0" background fluxes
- Looking for qualitatively good fits
- Neglecting finite energy resolution of Fermi

There exist related analyses: [Cirelli et al. (2008), Meade et al. (2009), Grasso et al. (2009), Bergstrom et al. (2009)]

Search Strategy and good Decay Channels

List of decay channels that we looked at closer:

	ψ_{DR}	Decay Channel	$M_{ m DM} \ [{ m GeV}]$	$\tau_{\rm DM} \ [10^{26} {\rm s}]$
	$\psi_{ ext{DN}}$	$\psi_{\rm DM} \to \mu^+ \mu^- \nu$	3500	1.1
	$\psi_{ m DN}$	$\psi_{\rm DM} \to \ell^+ \ell^- \nu$	2500	1.5
I	Bosonic ϕ_{DN}	$\psi_{\rm DM} \to W^{\pm} \mu^{\mp}$	3000	2.1
	PDN	$\phi_{\rm DM} \to \mu^+ \mu^-$	2500	1.8
	$\phi_{ m DN}$	$\phi_{\rm DM} \to au^+ au^-$	5000	0.9

ocratic

Note: Decay into quarks similar to decay into heavy gauge bosons

- Prompt radiation
- Galactic Inverse Compton
- Extragalactic Inverse Compton

Gamma Rays come from:

10

Prompt radiation

5

- Galactic Inverse Compton
- Extragalactic Inverse Compton

50 100

Energy [GeV]

500 1000

10

100

1000

- Prompt radiation
- Galactic Inverse Compton
- Extragalactic Inverse Compton

- Prompt radiation
- Galactic Inverse Compton
- Extragalactic Inverse Compton

- Prompt radiation
- Galactic Inverse Compton
- Extragalactic Inverse Compton

Dwarf Galaxy bounds on Decaying DM

Selection of Models that fit PAMELA and Fermi

Split SUSY with R-parity violation

[Chen et al., 2009]

Neutralino decay mediated by heavy sleptons

Topological Dark Matter

[Murayama et al., 2009]

Skyrmion decay via dim-6 operators

Long-lived Kaluza-Klein Dark Matter

[Okada *et al.*, 2009]

small curvature in UED models

Decaying Mesons in Hidden Sectors

[Mardon *et al.*, 2009]

long lifetime due to dim-6 operators

Sneutrino Dark Matter

[Demir et al., 2009]

long lifetime due to small Dirac-mass Yukawas

Hidden Gaugino Dark Matter

[Ibarra, Ringwald, Tran and CW 2009, accepted by JCAP]

long lifetime due to tiny kinetic mixing

Hidden Gaugino Dark Matter

Setup: MSSM & Hidden Gaugino of unbroken U(1)'

[lbarra, Ringwald, Tran and CW, accepted by JCAP 2009]

- Long lifetime due to **tiny kinetic mixing** ~ O(10⁻²²) between hidden U(1)' and hypercharge U(1)_Y (motivated by scenarios with warped extra dimensions)
- Only two free parameters, but exact branching ratios depend on MSSM mass spectrum
- In certain cases (light enough sleptons, large mu-term), three-body decay into charged leptons can be dominant ρ^{\pm}

==> Fits Fermi/PAMELA

V. Conclusions

Conclusions

- Sterile Neutrinos and Gravitinos with R-parity violation are well motivated models for beyond the Standard Model physics that implicate the Decay of Dark Matter
- With typical search strategies for annihilation signals one could miss their signals
- Dark Matter Decay can explain the Fermi/PAMELA excess
- This interpretation will be tested soon by the upcoming Fermi LAT Observations of the high latitude diffuse Gamma Rays

THANK YOU