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Evidence for Dark Matter

There is substantial evidence for the existence of non-
baryonic dark matter

Dark Matter shows up gravitationally in

" Rotation curves of Galaxies

= X-Ray emission of intracluster gas »Bullet” Cluster
= Gravitational Lensing S
CMB + LSS
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[Clowe et al. (2006)]
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Properties of Dark Matter

Dark Matter is
= non-baryonic: only weakly or super-weakly interacting with baryonic

matter
= cold (or warm): non-relativistic at onset of structure formation

= cosmologically long-lived or stable

A convincing dark matter candidate should be embedded in
a consistent thermal history of the Universe, /.e.

® possess a mechanism that explains the observed relic density

" be compatible with
Big Bang Nucleosynthesis

Baryogenesis (e.g. Leptogenesis)
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Stable Dark Matter

Standard scenario: WIMPs

" Some particle is stabilized by a
symmetry*

SM sector BSM sector

= [fitis weakly interacting it can

have naturally the right relic

abundance to be Dark Matter,

provided its mass lies in the
WIMP GeV - TeV range

T

==> Stable DM

* Without this symmetry, the particle
would have a lifetime around ~O(10°s)
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Unstable DM: Symmetry Violation

SM sector BSM sector Symmetry can be violated at

some high scale
®m DM becomes unstable

= |n case of e.9. dim-6 operators
the lifetime is roughly given by

WIMP

10 GeV\" [/ M °
w0009 (57 (i)

==> Decay on cosmological

e.g. GUT scale relics, hidden vector _
time scales

dark matter
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Unstable DM: superWIMPs

SM sector BSM sector Dark Matter can be

superweakly interacting.

" |n this case, DM is naturally
long-lived

" Depending on the couplings, it
can have a cosmological

/

) 7 TsuperWIMP

, oM > 107 s
|

lifetime

|

==> Decay on cosmological

e.g. Gravitino with mild R-parity .
time scales

violation, Sterile Neutrino
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Dark Matter Candidates

There exists a large number Dark Matter candidates. They
iInclude

Stable

® Neutralinos, Lightest KK particles, Axions, Sneutrinos, Gravitinos,
WIMPzillas,...

Unstable

® | Gravitino with mild R-parity violation
® | Sterile Neutrinos

" Hidden Gauginos

" Right-handed sneutrinos

" Hidden U(1)' gauge bosons

" Hidden sector Mesons or Baryons

" Neutralinos with tiny R-parity violation
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Overview

Il.) Cosmic Rays from Dark Matter Decay
lll.) Models for Decaying Dark Matter
- Sterile Neutrinos
- Gravitino with R-parity violation
IV.) PAMELA & Fermi electron/positron data
- Interpretation in terms of decaying dark matter
- Prospects
V.) Conclusions

14 September 2009 Decaying Dark Matter



Il. Cosmic Rays from
Dark Matter Decay
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Cosmic Rays from Dark Matter Decay

Decay of DM can be observable in Cosmic Ray Fluxes:

*+ Propagation trivial (light follows geodesics,
galaxy transparent)
* Detection of sources possible

Photons
X- and Gamma-Rays

Positrons + Excess observed in the GeV - TeV range
+ Diffusive propagation
==> Flux isotropized
==> Source identification difficult

Anti-protons + Background estimates compatible with
measurements
+ Diffusive propagation

Anti-deuterons + Very low background expected compared
to typical signals from DM decay
+ Diffusive propagation
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Photons: Signal Profile

The Dark Matter Gamma-Ray signal is proportional to

the of the Dark Matter distribution™
D
F = Orov NV(E) f dr PDM (7“) -
47’(‘ TDMMDM
l.o.s.
=5
0 from decay is much

than the signal from annihilation
==> No need to look at e.g. the galactic
center (where the background is large)

®  Signal does of dark

matter distribution

*as long as characteristic DM scale larger than
Field of View; for small redshifts

Annihilation
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Photons: Targets for Decaying DM Searches

At low energies ~ O(10 keV): Look for Extragalactic Sources
Flux ~ O(107)—P1otons

year - m? - (1°)2

= Different extended objects (like satellite galaxies, galaxy clusters)
possess similar column densities and give comparable fluxes

" Fluxes from different extragalactic objects only a few times larger
than the flux from the Milky Way Halo [Boyarsky et al. (2008)]

At high energies ~ O(10 GeV): Look for the Milky Way Halo
photons

Flux ~ O(1
we~ O )year-m2 - (1°)2

= Very small fluxes at high energies
" Observation of point sources can only give marginally better results

14 September 2009 Decaying Dark Matter
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Photons: The Halo Component

_ Estimated
extragalactic diffuse
background as seen
by Fermi LAT

__ Diffuse Radiation
from the Milky
Way

[Regis, M. et al. (2009)]
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At high latitudes the extragalactic background

dominates the diffuse flux.
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Cosmic Rays from Dark Matter Decay

Decay of DM can be observable in Cosmic Ray Fluxes:

Photons + Propagation trivial (light follows geodesics,
galaxy transparent)

X- and Gamma-Rays _ _
* Detection of sources possible

+ Excess observed in the GeV - TeV range
+ Diffusive propagation

==> Flux isotropized

==> No direct Source detection possible

Anti-protons + Background estimates compatible with
measurements
+ Diffusive propagation

Anti-deuterons + Very low background expected compared
to typical signals from DM decay
+ Diffusive propagation
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PAMELA and Fermi LAT Data
PAMELA and Fermi LAT detected deviations from the

astrophysical expectations [Adriani et al. (2008), Abdo et al. (2009)]
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m  Standard propagation models do not predict rise in positron fraction as

observed by PAMELA
"  The Fermi results for the electron+positron flux, together with the H.E.S.S.

results, point to an excess up to ~ 1 -2 TeV
= |nterpretation difficult since observations measure only the local flux
==> difficult to distinguish source distribution
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Propagation of Charged Particles in the Galaxy

Standard : ,Exotic*
primary sources: primary sources:
SN remnants (?) , e.g. Pulsars, DM

Propagation in | Interaction with
galactic B-field: ~~ | ISM and ISRF:

- Diffusion _ - Inverse Compton
- Reacceleration - Spallation

- Convection

Solar Modulation g = Observation

Propagation is local phenomena ==> No large difference between signals from
pulsars or decaying and annihilating dark matter
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Pulsar Interpretation of positron excess

The observed excesses may be explained by e*/e” emission

of nearby pulsars.
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" |f fraction of spin-down energy that goes into e*/e"emission and
spectral cutoffs are adjusted appropriately, the observations can be

reproduced
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l1l. Models for
Decaying Dark Matter
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Sterile Neutrino Dark Matter

The Standard Model of
Particle Interactions

I'hee Gemeratlons of Matte

II III

ri F
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Sterile Neutrinos as DM

Standard Model + three right-handed neutrinos.
With [Dodelson and Widrow (1994), Shi and Fuller (1999)]

® Majorana mass terms around 1 keV - 100 GeV
" appropriately chosen Yukawa couplings

this model can explain different beyond SM

phenomena:
= Neutrino Oscillations,
= Dark Matter,

which is identified with the lightest sterile neutrino, Nf,

= Baryon Asymmetry of the Universe,

produced via CP-violating oscillation of active neutrinos and
sphaleron processes at energies above 100 GeV,
" and can accomodate Inflation & Dark Energy

[see e.g. Boyarsky, Ruchayskiy and Shaposhnikov (2008)]
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Sterile Neutrino as DM: Gamma Ray Line

The lightest sterile neutrino, N, is Dark Matter

= | ong DM lifetime implies very small Yukawa couplings,
Y<O(10™) for N, and hence a small Majorana mass ~ O(keV)

= N is produced due to mixing with active neutrinos in the early

Universe (either resonantely or non-resonantely)
m  X-ray observations can detect sterile neutrino dark matter due to

two-body decay into active neutrino + photon:

" Line searches have been performed for
M31, galaxy clusters, dwarf spheroidal galaxies
Extra-galactic X-ray background
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Sterile Neutrinos as DM: Constraints
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Excluded by Lyman-a
[A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov (2008)]
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Gravitino Dark Matter
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Gravitino Dark Matter: NLSP bottleneck

MSSM + Gravitino (+ right-handed neutrinos).

m Gravitino is LSP and Dark Matter
" |tis produced Reheating
during reheating Q35 ~ 1
in the late decay of NLSPs ms/2
" |f baryon asymmetry is generated by
Leptogenesis

==> lower bound on gravitino mass NLSP
m_, > O(5 GeV) T~ M
" This gives a lower bound on the NLSP /
lifetime /

Tase = O(1 0° S) Yy ¥ Gravitino LSP
==> NLSP decays during BBN

see [Buchmueller, Covi, Hamaguchi, Ibarra and Yanagida (2007)]
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Gravitino Dark Matter

Problem: Long-lived NLSPs in general spoil BBN
e.g. Bino NLSP:
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[Feng, Su and I'Irlﬁkaf/ama (2004)]

Solution: Get rid of NLSP before BBN by
allowing mild violation of R-parity
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Gravitino Dark Matter with R-parity Violation

R-parity can be violated by aterm  ~ A;;xL;Lje€j,
= BBN and Leptogenesis give lower and upper bound on size of

breaking L0-14 < \ < 10-7

®  As a consequence the gravitino becomes unstable with a long

lifetime (due to Planck-mass suppression and smallness of A)
’7'3/2 Z 0(1023 S)

The gravitino decays via the following decay channels:
(Branching ratios become model-independent for large gravitino masses)

¢3/2 —>’}/U ¢3/2 — ZOI/
Va2 — WEEF P32 — h'v
" Decay products are potentially visible in Cosmic Rays

Note: naturalness suggests an upper bound m__ <600 GeV
[Buchmueller, Endo and Shindou (2008)]
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Positron fraction e*/(e*+ ")

e*/e” Flux from Gravitino DM

Comparison with Cosmic Ray positron and electron data
= Decaying Gravitinos are unlikely the cause for the

PAMELA/Fermi excesses, since this requires TeV masses.
® However: lower bounds on life-time can be extracted from data
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[Buchmueller, Ibarra, Shindou, Takayama and Tran (2009)]

14 September 2009 Decaying Dark Matter 28



Gamma Ray Flux from Gravitino DM

= The Fermi/PAMELA observations still allow an observable
impact on the extragalactic gamma-ray background

= Prominent feature is a gamma-ray line at half of the gravitino
mass

Sreekumar et al, —e—i
Strong etal. —e—1 -

-
OI
(]

E2 dJ/dE [(cm® str s)' GeV]
-

e
o

-----
* s

0.1 1 10 100
E [GeV]
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IV. PAMELA & Fermi

Las Pamelas Enrico Fermi
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PAMELA/Fermi excess from DM Decay
Model-independent analysis in terms of Decaying DM,

concentrating on two- and three-body decay channels
see [lbarra, Tran and CW, arXiv:0906.1571]
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= Taking standard propagation model (analytical) [Donato et al. (2004)]
= Using Pythia Monte-Carlo for decay & fragmentation calculation

" Using Galprop ,,Model 0“ background fluxes

" Looking for qualitatively good fits

" Neglecting finite energy resolution of Fermi

There exist related analyses: [Cirelli ef al. (2008), Meade et al. (2009), Grasso
et al. (2009), Bergstrom et al. (2009)]
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Search Strategy and good Decay Channels

List of decay channels that we looked at closer:

= Fermior """

1

. Bosonic

dDY
)

A _ 1 _

Decay Channel| Mpy [GeV]|mpwm [10%9]
YoM — ppTv| 3500 el
Yom — (v | 2500 1.5
Yom — WHpT 3000 sl
¢pm — ppT | 2500 1.8
¢pM — TTT 5000 0.9

® Note: Decay into quarks similar to decay into heavy gauge bosons

6 July 2009
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Decay Channels that fit the data
dpM — T
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Decay Channels that fit the data
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Decay Channels that fit the data
YoM — WHpt
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Decay Channels that fit the data
%M —p
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Decay Channels that fit the data
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Dwarf Galaxy bounds on Decaying DM

Atmospheric Cherenkov

1026 E LI I I I 1 I I LI LI I I I I I I LI
Telescope observations 10 L Willman 1 Sagittarius
(H.E.S.S. and VERITAS) of  ;gu [ e r e
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1 177} F T T T T T === - —
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: : - — ~ ]
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[Essig et al. (2009)]
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Selection of Models that fit PAMELA and Fermi

Split SUSY with R-parity violation [Chen et al., 2009]

Neutralino decay mediated by heavy sleptons

Topological Dark Matter [Murayama ef al., 2009
Skyrmion decay via dim-6 operators

Long-lived Kaluza-Klein Dark Matter ~ [©kada efal, 2009]
small curvature in UED models

Decaying Mesons in Hidden Sectors ~ [Mardon efal, 2009]

long lifetime due to dim-6 operators

Sneutrino Dark Matter [Demir et al., 2009)
long lifetime due to small Dirac-mass Yukawas

Hidden Gaugino Dark Matter [Ibarra, Ringwald, Tran and CW 2009,
accepted by JCAP]

long lifetime due to tiny kinetic mixing
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Hidden Gaugino Dark Matter

Setup: MSSM & Hidden Gaugino of unbroken U(1)’

[Ibarra, Ringwald, Tran and CW, accepted by JCAP 2009]

= | ong lifetime due to tiny kinetic mixing ~ O(10%) between hidden

U(1)" and hypercharge U(1),, (motivated by scenarios with warped

extra dimensions)

" Only two free parameters, but exact branching ratios depend on
MSSM mass spectrum

= |n certain cases (light enough sleptons, large mu-term), three-

body decay into charged leptons can be dominant .y
==> Fits Fermi/PAMELA Xy
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V. Conclusions
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Conclusions

® Sterile Neutrinos and Gravitinos with R-parity violation are well
motivated models for beyond the Standard Model physics that
implicate the Decay of Dark Matter

" With typical search strategies for annihilation signals one could
miss their signals

" Dark Matter Decay can explain the Fermi/PAMELA excess

® This interpretation will be tested soon by the upcoming Fermi
LAT Observations of the high latitude diffuse Gamma Rays

THANK YOU
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