Universität Zürich

Summary (and visions?) for the future: WIMPs

5th Patras Workshop on Axions, WIMPs and WISPs Durham University, July 17, 2009

Laura Baudis

Physik Institut, University of Zurich

We should be all very happy

• Cosmology, particle physics and astrophysics are far from completion!

Markus Ahlers: "the standard model of particle physics has some *shortcomings*; there are *puzzles* from cosmology, and some *new puzzles* from astrophysics"

- In summary:
 - ➡ there are many open issues; one of them is related to the *enigmatic dark sector*
- (Some) solutions to these puzzles are motivated by:
 - ➡ testability (bottom-up, M. Ahlers)
 - string theory (top-down, J. Conlon)

The enigmatic dark matter

• The Swiss astronomer, Fritz Zwicky, coined 1933 the term "dunkle Materie"

OBER 1937

NUMBER 3

. zwicky

Laura Covi:

"since the discovery of Zwicky we have learned a lot about dark matter; in particular, *what it is not*" "the next decade should hopefully bring us some *more clear answers*"

We are hopeful...

- and certainly we still have many questions, in particular:
- Is the dark matter really as simple as a gas of collisionless particles?

Leszek Roszkowski:

"is the dark matter made up of particles?" "suggested by clustering, but otherwise an assumption"

"is the dark matter made up of only/predominantly one species?" "economical assumption"

"is it all cold? a fraction may be warm"

"what *is* the dark matter? the dark matter is *dark*"

No shortage on dark matter candidates

- Theorists provide strong guidance to us experimentalists
- Prediction for the mass span (at least) 29 orders of magnitude:
 - ➡ from 10⁻⁶ eV (axion) to 10¹⁵ GeV (WIMPzilla)
- Predicted cross sections:
 - ➡ from non-interacting (EWIMPs)
 - to strongly interacting (Qballs)

Leszek Roszkowski: "no shortage of ideas... but few good ones... and even fewer long-lasting"

Howie Baer: "dark matter must be some particle state not contained in the standard model"

One good idea: WIMPs

- A miracle (thermal relic^{*})
- Still here with us (long lasting)
- Well motivated (not invented to solve the dark matter problem)
 - ➡ but (unlike axions) not top-down motivated
 - ⇒ (J. Conlon: "weak scale is not a top-down scale")
- Testable
- Most popular examples: neutralinos, lightest Kaluza-Klein particles and well-tempered neutralinos (H. Baer)

*relic: an object of particular veneration (Roky Kolb)

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

The cosmic food chain

The WIMP hypothesis is $\Delta T \propto E/C_{Thermometer}$

We hope to learn a lot from direct detectors, from indirect detectors and from accelerators!

For direct and indirect searches

- the distribution of WIMPs in the Milky Way is important; in particular for:
 - direct detection: local density and velocity distribution
 - ➡ indirect detection: halo distribution, substructure, GC, etc

(Klypin, Zhao & Somerville 2002)

The Aquarius project: six halos

• Adrian Jenkins:

- "how smooth is the dark matter mass distribution at the solar position?"
- "how smooth is the dark matter velocity distribution at the solar position?"
- "does the halo formation process leave "observable" imprints?"

- But: can we ignore the baryons?
- A. Jenkins:
- "almost certain baryons will make a difference to the detailed predictions"
- "the dark matter only simulations establish a baseline for future work"

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

A dark disc in the Milky Way

Justin Read: "The Milky Way stellar/gas disc at high redshift biases the accretion of massive satellites. They are dragged towards the disc plane where their accreted material forms a dark matter disc. For our standard cosmology, the Milky Way's dark disc has density in the range: $\rho_{dd} \sim 0.25$ -1 ρ_{shm} ."

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

Direct detection of WIMPs: how close?

- Collisions (elastic, inelastic) with atomic nuclei
- Rates are highly uncertain: (depend on: [m_x, σ], [f(v), ρ₀], [N, F²(E_R), E_{th}] ...)
- but certainly below 1 event/100 kg/day (since SI cross sections < 10⁻⁷ pb)
- Energy of recoiling nuclei is tiny (≤ 50 keV)
- Recoil spectrum is featureless (no bumps!)
- Background is many 10⁶ times higher

Differential rates (per 100 kg and day) for different targets (Ar, Ge, Xe)

(Standard halo model with $\rho = 0.3 \text{ GeV/cm}^3$)

The WIMP-nucleon cross section: how low can it go?

- Well-tempered neutralinos
- Howie Baer:
- "scan over 10 models with and without universality; keep only models with correct relic abundance"
- "bulk of models asymptote at 10⁻⁸ pb!"

Spin-independent Direct Detection

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

Backgrounds are here, and well under control (but be prepared for the unexpected!)

Spin-dependent

DAMA: Nal

KIMS: Csl

XENON10: ¹²⁹Xe

A 4444 A

CMSSM

10⁻³⁴ **Experimental Results** ດ່ SD pure neutron cross section [cm July 2009 10⁻³⁶ CDMS-II 73Ge **Spin-independent cross section** (normalized to nucleons) WIMP-nucleon osi [cm²] 10⁻³⁸) DAMA **LIBRA** EDELWEISS: 200 -40 10 VARP: 2007 10⁻³⁴ **CRESST: 2008 ZEPLIN III: 2008**

10² WIMP Mass [GeV/c²] SD pure proton cross section [cm²] 10-43 10⁻³⁶ **CDMS: 2008** COUPP **KIMS: Csl XENON10: 2007** CMSSM2008 10⁻³⁸ (Roszkowski, Ruiz, Trotta) **SuperK** 10-44 10^{2} 10^{3} 10^{1} WIMP Mass [GeV] 10⁻⁴⁰ CMSSM 10² WIMP Mass [GeV/c²] Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July, ..., ____

17

New Experimental Results at Low WIMP Masses

TEXONO: 4 x 5 g Ge in 30 mwe lab in Taiwan

CoGeNT: 500 g PPC Ge

DAMA/LIBRA: highest exposure, 0.82 ton x year

Pierluigi Belli: "the data favor the presence of a modulated behavior with proper features at 8.2 sigma C.L."

- New run since October 2008
- Next upgrade: replace PMTs with high QE one => lower the energy threshold
- Proposed: a 1 ton, highly radio-pure Nal experiment

Inelastic dark matter (testable)

 Two states with a mass splitting around 100 keV: by "coincidence" equal to the kinetic energy of WIMPs in the halo

$$\delta = m_{\chi^*} - m_{\chi} \sim \beta^2 m_{\chi} \sim 100 \text{ keV}$$

- ➡ WIMP-nucleus scattering occurs through a transition to a WIMP excited state
- ⇒ (elastic scattering χ + N → χ + N is forbidden, inelastic scattering χ + N → χ^* + N is allowed)
- ➡ only WIMPs with sufficient kinetic energy to up-scatter into the heavier state will scatter off nuclei

$$\beta_{\min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta\right)$$

visible to DAMA and CDMS

S. Chang et al.,

Phys.Rev.D79:043513,2009

Neil Weiner, IDM08

- Consequences for experiments:
 - suppression of signals on lighter vs heavier target
 - enhancement of the modulated vs unmodulated signal (20-30%)
 - ⇒ elimination of low energy events; signal peaks at ≈ 70 keV for Ge, 35 keV for I/Xe, 25 keV for W

Dark matter interacting with electrons?

• Tobias Bruch: "what if we miss a signal due to an electron recoil interaction?"

Dark matter interacting with electrons?

- Sterile neutrino decaying to light v + X-ray, or something else?
- Message to theorists: we are in need of a model! CDMS ER spectrum at low-energies

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

The CDMS/SuperCDMS Experiment (Soudan)

- Exposure for new runs (125-128): **750 kg days** (total exposure CDMS-II: 1300 kg days)
- Tobias Bruch: "analysis is ongoing while we speak" (expect results by end of August)

SuperCDMS detectors (1" thick ZIPs, each 650 g of Ge) have been validated

First SuperTower installed at Soudan (3 kg of WIMP target) and working

Goal: 5 x 10⁻⁴⁵ cm² with 16 kg Ge

Goal: 7 SuperTowers at SNOLAB

The CRESST experiment (Gran Sasso)

- Goal: operate 10 kg array of 33 CaWO₄ detectors at 20 mK
 - new limit from operating 2 detectors (48 kg d) published in 2008, arXiv:0809.1829v1
 - Hans Kraus: "new run successfully started in June 2009"

"9 detector module operational; cryostat still cooling, more modules may come into transition. All crystals have new clamps."

EURECA (CRESST, EDELWEISS, ROSEBUD, CERN + others)

Joint effort for a 100 kg - 1 ton cryogenic (mK) experiment in Europe

Proposal for design study submitted to ASPERA

Data taking with 100 kg: 2015; 1 ton installed: 2018

The XENON100 Experiment (Gran Sasso)

- Alexander Kish: "the detector is operating underground"
- "first dark matter search is planned before the end of 2009"
- Background: factor 100 lower than in XENON10 (very preliminary)

XENON100 Upgrade:

260 kg (total) mass of LXe

QUPID light detectors

Construction 2010

ZEPLIN-III (Boulby Mine)

- Henrique Araujo: "world-level SI and SD results"
- "second science run to begin soon with upgraded instrument"
- "tenfold sensitivity improvement within reach"

The ArDM experiment (CERN)

- Polina Otyugova: "for the first time the ArDM was operated above ground at CERN"
- "first successful detection of 50 keV energy in 1 ton-scale detector"
- "preliminary evidence for nuclear recoils"
- "the detector will be moved to an underground location (end of 2010)"

DARWIN (DARk matter Wimp search with Noble liquids)

- Design study for Next-generation noble liquid facility in Europe submitted (in response to the first ASPERA common call) on June 4th, 2009, 3:57 pm
- Goals:
 - unify and coordinate extensive existing expertise in Europe (XENON, WARP, ArDM plus new groups, including US groups from XENON and WARP)
 - study both argon and xenon as WIMP target media and provide recommendation for facility (full technical design report) in 2-3 years from now
 - submit full proposal in response to second ASPERA call
- **Possible locations**: LNGS (Italy), ULISSE (Modane extension, France), or SUNLAB (Poland)
- Participants: Switzerland (ETHZ, UZH), Germany (MPIK, KIT, Münster), France (Subatech), Italy (INFN: L'Aquila, Milano, Napoli, Padova, Pavia, Torino), Netherlands (Nikhef), Poland (IFJ PAN, US, PWr), USA (Columbia, Princeton, Rice, UCLA)
- Funding: provided by the national instruments of each participant ('virtual pot')
- Decision: expected in summer/fall 2009, start in October 2009

Directional Detectors

- Would provide robust signature
- 10-100 events needed, depending on direct. capability
- **DMTPC** (CF₄ gas TPC, at MIT)
- Asher Kaboth: "demonstrated operation of a CCD-based gas detector with directional sensitivity"
- "collected and analyzed surface run background data"
- "plans for underground operation at WIPP"
- **DRIFT-II** (negative ion, CS₂, TPC at Boulby)
- Neil Spooner: "big progress in the last two years (published)"
- "directional signal possible at 1m³ scale"
- "head-tail (sense) exists and is understood at 1m³ scale"
- ASPERA proposal: CYGNUS (UK, France, Germany, Spain)

Observe 7 recoil events

etector mass

I0.8 day live-time

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

29

The TEXONO experiment

- Lin, Shin-Ted:
- "competitive limits at WIMP-mass < 10 GeV obtained with ULEGe prototype at shallow site"
- "plans: move to Sichuan underground lab. (> 2 km rock) soon"

KIMS (Korea invisible mass search) (at Yangyang)

- Seung Cheon Kim: "12 crystals (104.4 kg) crystals installed"
- "more than one year of data collected"
- "hoping to report new results this year"
- Plans: new PMTs (higher QE and lower backgrounds)

Summary direct detection (I)

- Various targets and techniques are being employed to search for WIMPs
- Steady progress in the last ~ 10 years: > factor 100 increase in sensitivity!

Summary direct detection (II)

- Good news: experiments are probing some of the theory regions
- Visions: next generation projects should reach the $\approx 10^{-10}$ pb level
- What will they see? (nobody has been there before!)

Indirect detection in the era of PAMELA, Fermi, HESS and others

- Evidence for WIMPs? Unclear!
- Aldo Morselli:
 - "adopting the presence of an extra e[±] primary component ... allows to consistently interpret Fermi-LAT data, HESS and PAMELA"
 - ➡ "such an extra component can originate from pulsars or from annihilating dark matter (for a model with M ≈ 1 TeV)"
- Diffuse gamma ray spectrum

New Fermi data: "the GeV excess" seen by EGRET cannot be reproduced!

However, a smaller excess is still seen over the whole energy range !?

(A. Morselli)

Indirect detection in the era of PAMELA, Fermi, HESS and others

- Evidence for WIMPs? Unclear!
- Julien Lavalle:
 - "bad news for DM finders: DM explanation unlikely (i) fine-tuned (II) unnecessary: pulsars can fit the excess"
 - "good news for DM searchers: most of independently-motivated models still fully viable, because they hardly contribute to the cosmic ray spectra"
- more than 200 papers on PAMELA alone...
- the upside:

hopefully better understanding of CR propagation, of standard sources and backgrounds (J. Lavalle)

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO, "I

Indirect detection in the era of PAMELA, Fermi, HESS and others

- How about the prospects for ACTs?
- Ulrich Schwanke:
 - "dust has settled over DM early claims (GC, unidentified sources)"
 - ➡ "prospects for DM detection from the galactic halo are good (also for Fermi)"
 - "low-threshold essential for next-generation instruments"

- on dwarf galaxies:
 - "there is at least a factor of 10 between limits and predictions"
 - "one order of magnitude uncertainties on DM profiles even for well-measured dwarf galaxies"
 - "need a better understanding of DM profiles"

Message from cold dark matter simulations:

• Adrian Jenkins:

From the solar position the main halo is the dominant signal in annihilation radiation. Substructures are harder to detect and the ones with highest signal to noise are likely to be relatively close and not the known satellites.

Dark matter at the LHC

- Howie Baer: "role of LHC: produce matter states associated with dark matter; decay to stable dark matter candidate usually give ETMISS signature"
- "in case of WIMP dark matter, additional signals from DD/ID of DM will provide complementary information"

mSUGRA : $A_0 = 0$, $\mu > 0$, $\tan\beta = 55$, $m_t = 172.6$ GeV

20

So, in the best of all worlds...

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

Let's assume that...

- We will have credible evidence from all three by 2010
- Question: how will we know we are seeing the same phenomenon?
- Many different opinions/papers (we will learn enough from the LHC; we need the ILC; depending where in SUSY space; etc)
- Let's wish for this problem!
- [dark matter may have only gravitational interaction: no accelerator production*, no direct detection, no indirect detection - an inconvenient truth]

* for gravitinos, unique collider signatures (H. Baer)

The world is full with a number of things, I'm sure we should be as happy as kings.

-Robert Louis Stevenson

"listen: there's a hell of a good universe next door; let's go"

-e.e.cummings

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

Thank you to the local organizers

- For doing the actual work
- For the great hospitality here in Durham

Thursday, July 16, 2009

Laura Baudis, University of Zurich, 5th Patras Workshop on Axions, WIMps and WISPs, July 17, 2009

Next (6th) Patras Workshop: Zurich

- July 5 July 9, 2010
- Hope to see you all there!

