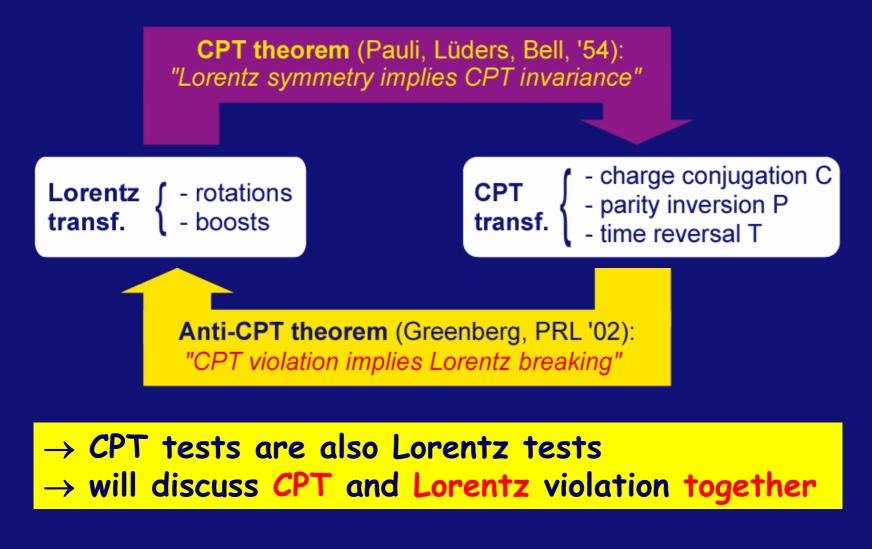

Tests of Lorentz symmetry and CPT invariance



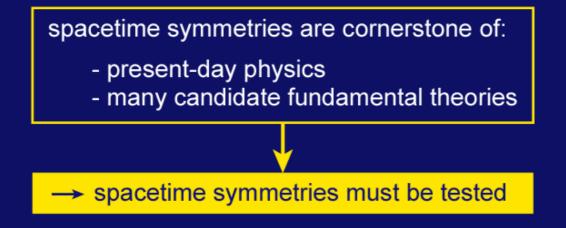
Ralf Lehnert Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares

5th Patras Workshop on Axions, WIMPs and WISPs 17 July 2009

Prologue: Connection between Lorentz and CPT symmetry

Local, point-particle quantum field theories:

<u>Outline:</u>

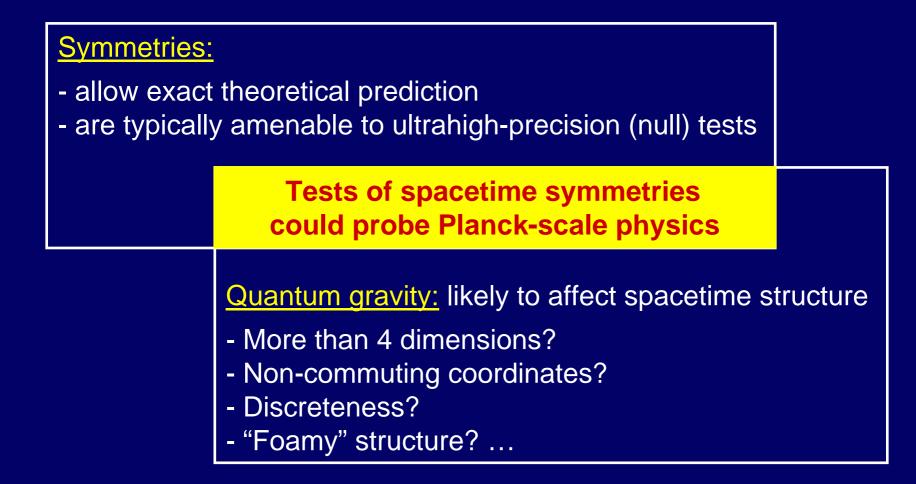

A. Motivation

B. SME test framework

C. Phenomenology and tests

A. Motivations for spacetime-symmetry tests

(i) philosophical necessity


(ii) possibility of testing Planck-scale physics

Nongravitational physics is well described by Standard Model (SM),

- **but**: phenomenological (many parameters)
 - several distinct interactions
 - excludes gravity

Solution:	look for more fundamental theory				
Candidates:	string (M) theory, loop gravity, supergravity,				
Problem:	Planck-scale measurements (attainable energies ≪ Planck scale)				
 common approach: scan predictions of a given theory for sub-Planck effects accessible with near-future technology, e.g., novel particles (SuSy) large extra dimensions & microscopic black holes gravitational-wave background 					

Alternative approach: What *can* be measured with Planck precision? *Is* there a corresponding quantum-gravity effect?

B. The SME test framework

(1) new transformations

- vacuum remains "empty"
- no Minkowski structure
- deformed lightcone

 relativ. simple, kinematical, and phenomenological

<u>E.g.:</u> Robertson's framework, its Mansouri-Sexl extension, DSR, ...

(2) "background" fields

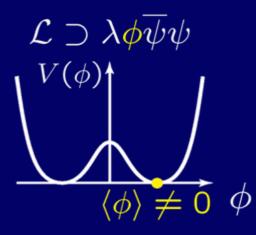
- ext. "fields" in vacuum
- conv. Minkowski structure
- conv. lightcone

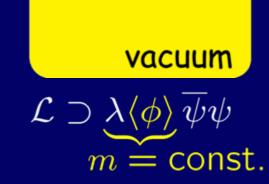
 microscopic, dynamical, can be motivated (later)

SME; contains some of the kinematical approaches; will focus on this description

Construction of the SME

$$\mathcal{L}_{\mathsf{SME}} = \underbrace{\mathcal{L}_{\mathsf{SM}} + \mathcal{L}_{\mathsf{EH}}}_{\mathsf{present physics}}$$


- k^{μ} , $s^{\mu\nu}$, ... coefficients for Lorentz violation
- minimal SME \rightarrow fermion 44, photon 23, ...
- generated by underlying physics (Sec A & next)
- amenable to ultrahigh-precision tests (Sec C)

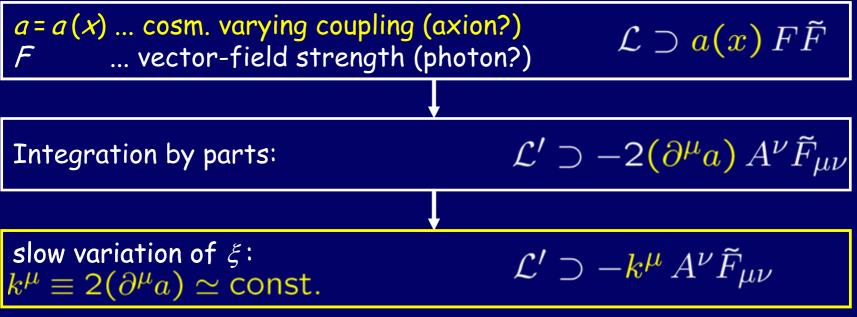

Q: Can these effects actually be generated in underlying physics?A: Yes! (see next slides)

(1) Spontaneous Symmetry Breaking

string theory: Lorentz symmetry $\mathcal{L} \supset \lambda B^{\mu} \overline{\psi} \gamma_5 \gamma_{\mu} \psi$ $V(B^{\mu}) \uparrow \qquad \downarrow$

 $\langle B^{\mu} \rangle \neq 0$

 $\mathcal{L} \supset \underbrace{\lambda \langle B^{\mu} \rangle}_{b^{\mu}} \overline{\psi} \gamma_5 \gamma_{\mu} \psi$ $\underbrace{b^{\mu} = \text{const.}}$


Kostelecký, Perry, Potting, Samuel '89; '90; '91; '95; '00

 B^{μ}

(2) Cosmol. varying scalars (e.g., fine-structure parameter)

intuitive argument: spacetime spacetime

mathematical argument:

Kostelecký, R.L., Perry '03; Arkani-Hamed et al. '03

Other mechanisms for Lorentz violation

Noncommutative geometry (QM of spacetime points) $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$ Seiberg-Witten: $\hat{x}^{\mu} \rightarrow$ usual Minkowski coordinates x^{μ} \rightarrow SME terms emerge: $\mathcal{L}_{photon} \supset \frac{1}{8} q \, \theta^{\alpha\beta} F_{\alpha\beta} F^{\mu\nu} F_{\mu\nu}$

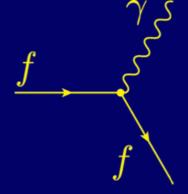
e.g., Carroll et al. '01

Topology (1 spatial dim. is compact: large radius R) Vacuum fluctuations along this dim. have periodic boundary conditions \rightarrow preferred direction in vacuum \rightarrow calculation: $k^{\mu}A^{\nu}\tilde{F}_{\mu\nu} \subset \mathcal{L}_{SME}$

Klinkhamer '00

C. Phenomenology (1) Free particles: modified dispersion relations

p dependence of E is modified: $E(\vec{p}) = \sqrt{m^2 + \vec{p}^2 + \delta E_{LV}(\vec{p})}$


Energy-momentum conservation:

$$\begin{pmatrix} E_{\text{in}}^{\vec{p}} + \delta E_{\text{in}}^{\vec{p}} \\ \vec{p}_{\text{in}} \end{pmatrix} + \begin{pmatrix} E_{\text{in}}^{\vec{k}} + \delta E_{\text{in}}^{\vec{k}} \\ \vec{k}_{\text{in}} \end{pmatrix} = \begin{pmatrix} E_{\text{out}}^{\vec{p}} + \delta E_{\text{out}}^{\vec{p}} \\ \vec{p}_{\text{out}} \end{pmatrix} + \begin{pmatrix} E_{\text{out}}^{\vec{k}} + \delta E_{\text{out}}^{\vec{k}} \\ \vec{k}_{\text{out}} \end{pmatrix}$$

→ thresholds may be shifted
 → decays/reactions normally allowed may now be forbidden
 → decays/reactions normally forbidden may now be allowed

Sample tests at colliders

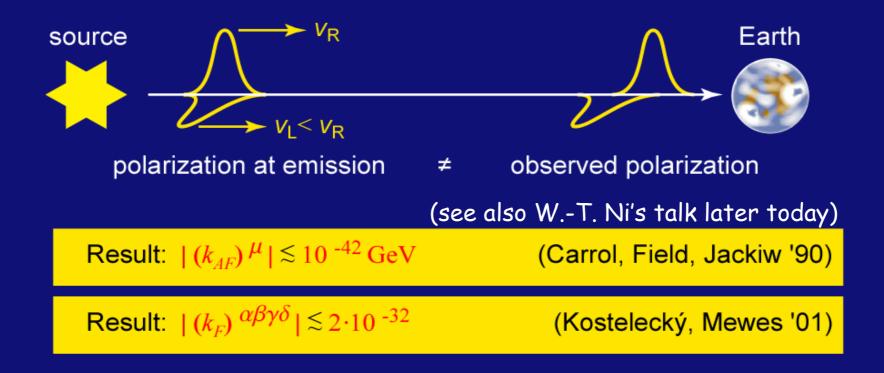
Vacuum Cherenkov radiation (charges become unstable):

-threshold effect: higher $E \rightarrow$ better bound -look at LEP electrons: not observed \rightarrow exp. limit: (certain LV in QED) < 10⁻¹¹

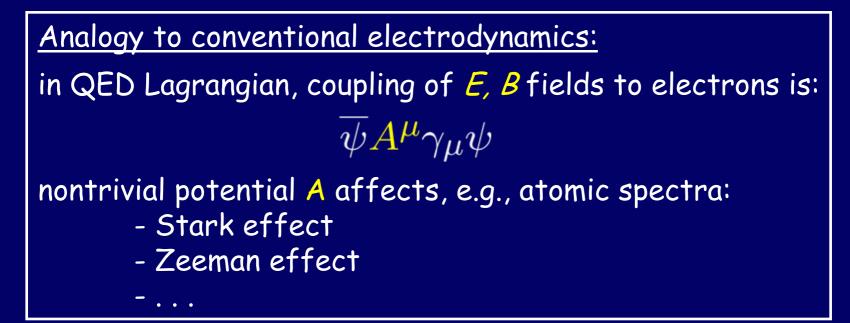
Photon decay (photons become unstable):

 γ

-threshold effect: higher $E \rightarrow$ better bound -look at Tevatron photons: not observed \rightarrow exp. limit: (certain LV in QED) > -10⁻¹²


(Hohensee, R.L., Phillips, Walsworth, PRL '09)

Sample astrophysical test

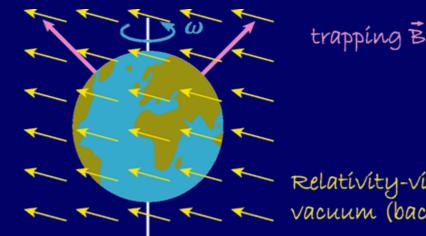

Spectropolarimetry of cosmological sources

Lorentz-violating vacuum can lead to birefringence ($v_R \neq v_L$)

→ cosm. sources at large distances with known polarization permit searching for predicted energy-independent polarization changes

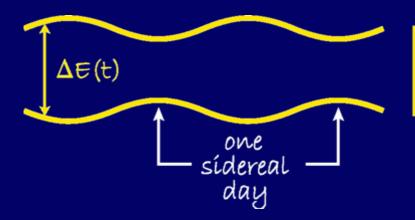
(2) Energy-level shifts in bound states

How does Lorentz and CPT breakdown affect matter?


the SME Lagrangian contains

$$\overline{\psi}b^{\mu}\gamma_5\gamma_{\mu}\psi$$

Expect: Lorentz/CPT violation shifts energy levels


Sample test: clock comparisons - sidereal variations

<u>clock:</u> nuclear or atomic transition in trapped particle

trapping B field

Relativity-violating vacuum (background b)

transition frequencies $\sim \vec{b} \cdot \vec{B}$ -> tíme dependent

no effect in various clock-comparison tests \rightarrow Relativity holds to ~10^{-30} GeV

Sample phenomenological studies performed within the SME

(Anti)Hydrogen spectroscopy Bluhm, Kostelecký, Russell '99 Phillips et al. '01 Experiments in Penning traps Bluhm, Kostelecký, Russell '97; '98 Gabrielse et al. '99 Mittelman et al. '99 Dehmelt et al. '99 Studies with muons Bluhm, Kostelecký, Lane '99 Hughes, Jungmann et al. '00 (q-2) collaboration '08 Clock comparisons Kostelecký, Lane '99 Hunter et al. '99 Stoner '99 Bear et al. '00 Canè et al. '04

(Indiana) (Harvard-Smithsonian)

(Indiana) (Harvard) (Seattle) (Seattle)

(Indiana) (Yale, Heidelberg, ...) (Brookhaven)

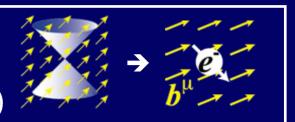
(Indiana) (Amherst) (Harvard-Smithsonian) (Harvard-Smithsonian) (Harvard-Smithsonian) Space-based tests Kostelecký et al. '02; '03 (Indiana) ACES (CNES, SYRTE, PTB, LUH, ...) PARCS? (JPL, NIST, ...) (Penn State, JPL, CalTech) RACE? SUMO? (Stanford, ...) (ZARM, Humboldt, ...) **OPTIS?** Tests with Photons and radiative corrections Carroll, Field, Jackiw '90 (M.I.T.)Colladay, Kostelecký '98 (Indiana) Jackiw, Kostelecký '99 (M.I.T. & Indiana) Kostelecký, Mewes '01; '02; '06; '07 (Indiana) Lämmerzahl *et al.* '03 (ZARM, Humboldt) Lipa et al. '03 (Stanford) Stanwix et al. '05 (Western Australia) Gravity Lämmerzahl '97 (ZARM) Bailey, Kostelecký '06 (Indiana) Battat et al. '07 (Harvard-Smithsonian) Müller et al. '08 (Stanford, ...)

Neutrinos Barger, Pakvasa, Weiler, Whisnant '00 Kostelecký et al. '03; '04; '06 LSND '05 Cosmic radiation Coleman, Glashow '99 R.L. '03 Altschul '06; '07 Meson oscillations <u>Kostelecký *et al.* '95; '96; '98; '00</u> KTeV collaboration, Hsiung et al. '99 FOCUS collaboration, Link et al. '03 OPAL collaboration, Ackerstaff et al. '97 DELPHI collaboration, Feindt et al. '97 **BELLE** collaboration **BaBar collaboration '08**

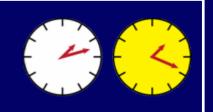
(Wisconsin, ...) (Indiana) (Los Alamos)

(Harvard) (München) (South Carolina)

(Indiana) (Fermilab) (Fermilab) (CERN) (CERN) (KEK) (SLAC)



presently no credible exp. evidence for Relativity violations, but:


(1) various theoretical approaches to quantum gravity can cause such violations

(2) at low *E*, such violations are described by SME test framework
 (eff. field theory + background fields)

(3) high-precision tests (spectroscopy, astrophysical studies, satellite missions, atomic clocks, interferometry, ...) possible

Bounds c	on SME	<u>coeff.</u>	<u>for r</u>	<u>natte</u>	<u>r</u>		arXiv: 0	801.0287
Coefficient	Proton	Neutron	Electro	n	Coefficient	Proton	Neutron	Electron
Бх	10 ^{- 27} GeV	10 ^{- 31} GeV	10 ^{- 31}	GeV	đ _x	10 ^{- 25} GeV	10 ^{- 29} Ge	V 10 ⁻²² GeV
Б _г	10 ^{- 27} GeV	10 ^{- 31} GeV	10 - 30	GeV	đγ	10 ⁻²⁵ GeV	/ 10 ^{– 28} Ge	eV 10 ⁻²² GeV
δ _z	_	_	10 ^{- 29}	GeV	σ̄z	-	-	10 ^{- 19} GeV
δ _r	_	10 ⁻²⁷ GeV	_					
\tilde{b}_{J}^{*} (J = X, Y, Z)	_	_	_		Ĥ _{XT}	_	10 ⁻²⁶ Ge	- V
					Ĥут	_	10 ⁻²⁷ Ge	- V
č_	10 ⁻²⁵ GeV	10 ^{- 27} GeV	10 - 19	GeV	Я́ _{ZT}	-	10 ⁻²⁷ Ge	- V
ζq	10 ⁻²² GeV	_	10 - 19	GeV				
Ĉχ	10 ⁻²⁵ GeV	10 - 25 GeV	10 - 19	GeV	ğτ	-	10 ⁻²⁷ Ge	- V
Ĉγ	10 ⁻²⁵ GeV	10 - 25 GeV	10 - 19	GeV	Ĝ₀	-	10 ⁻²⁷ Ge	- V
τ _z	10 ^{- 24} GeV	10 - 27 GeV	10 ^{- 19}	GeV	ĝα	-	-	-
ζ _{TX}	10 ^{- 20} GeV	_	10 - 18	GeV	ĝ_	-	-	-
ĈΤΥ	10 ⁻²⁰ GeV	_	10 - 18	GeV	\tilde{g}_{TJ} (J = X,Y,Z)	-	-	-
ζ _{TZ}	10 ⁻²¹ GeV	_	10 - 20	GeV	Ĩухү	-	-	-
Ĉ ΤΤ	-	_	10 ^{- 18}	GeV	Ğγx	-	-	-
					ğzx	-	-	-
Ĝ₊	-	10 ⁻²⁷ GeV	10 - 17	GeV	ĝxz	-	-	-
ď_	_	10 ⁻²⁷ GeV	10 - 17	GeV	ĝy z	-	-	-
đq	_	10 ⁻²⁷ GeV	10 - 17	GeV	Ĝzγ	-	-	-
đ _{XY}	_	10 ⁻²⁷ GeV	10 - 18	GeV	Ğрх	10 ^{- 25} GeV	/ 10 ^{– 29} Ge	V 10 ⁻²² GeV
đγ z	-	10 ⁻²⁶ GeV	10 - 18	GeV	Ĝργ	10 ⁻²⁵ GeV	/ 10 ^{- 28} Ge	eV 10 ⁻²² GeV
đ zx	_	_	10 ^{- 17}	GeV	ğ ₀z	-	-	—

"Data Tables for Lorentz and CPT Violation"

V.

0001 0007

	1	'Data Tables for Lorentz	and CPT Violation"
Bounds on photo	<u>n SME coeff</u>	<u>.</u>	arXiv: 0801.0287
Coefficient	Sensitivity	Coefficient	Sensitivity
(ĩĸ _{e+}) ^{XY}	10 ^{- 32}	(κ _{e-}) ^{γz}	10 ^{- 16}
$(\tilde{\kappa}_{e+})^{XZ}$	10 ^{- 32}	$(\tilde{\kappa}_{e^-})^{XX} - (\tilde{\kappa}_{e^-})^{YY}$	10 ^{- 15}
(ĩ _{×e+}) ^{YZ}	10 ^{- 32}	(ĩ _{ke-}) ^{ZZ}	10 ^{- 14}
$(\tilde{\kappa}_{e^+})^{XX} - (\tilde{\kappa}_{e^+})^{Y}$	^Y 10 ^{- 32}	(ĩĸ₀+) ^{XY}	10 ^{- 12}
(ĩ _{ke+}) ^{ZZ}	10 ^{- 32}	(κ̃ _{o+}) ^{XZ}	10 ^{- 12}
(ĩĸ _{o-}) ^{XY}	10 ^{- 32}	(ĩ _{×o+}) ^{YZ}	10 ^{- 12}
(ĩĸ _{o-}) ^{XZ}	10 ^{- 32}	к _{tr}	10 ⁻⁷
(κ̃ _o _) ^{Υ Ζ}	10 ^{- 32}	k ⁽³⁾ (V)00	10 ⁻⁴² GeV
$(\tilde{\kappa}_{o-})^{XX} - (\tilde{\kappa}_{e+})^{Y}$	^Y 10 ^{- 32}	k ⁽³⁾ _{(V)10}	10 ⁻⁴² GeV
(κ̃ _o _) ^{ZZ}	10 ^{- 32}	Re k ⁽³⁾ _{(V)11}	10 ⁻⁴² GeV
(ĩ _{Ke-}) ^{XY}	10 ^{- 16}	lm k ⁽³⁾ _{(V)11}	_
(ĩ _{ke-}) ^{XZ}	10 ^{- 16}		