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Photon Oscillations and the WISP Zoo

Weakly interacting slim particles (WISPs) can (and will) mix with photons
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A photon emitted by E is a combination of two different waves propagating at
different speeds ... the beating of the two waves produces oscillations
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Photon Oscillations and the WISP Zoo

[ Axion-like Particles j [ Hidden Photons ]
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Photon Oscillations and the WISP Zoo

[ Axion-like Particles j [ Hidden Photons ]
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Photon Oscillations in a medium : Resonance

In a medium photons get an “effective” mass (index of refraction)
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In the oscillation probability, the mass squared difference is what matters
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Photon Oscillations in a medium : Resonance

-

In a medium | RECIPE FOR A PHOTON OSCILLATION EXPERIMENT

Longest possible distances ... 1)

Homogeneous backgrounds (that we can tune?) ...

Intense and controlled source ... 0

Small photon frequencies ... m% > :
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In the oscillation probability, the mass squared difference is what matters
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RECIPE FOR A PHOTON OSCILLATION EXPERIMENT

Longest possible distances ...
Homogeneous backgrounds ... K

Afterglow Ligh  1ntense and controlled(understood) source ...

400,000 yr{ Small photon frequencies ...
Primordial Magnetic Fields (?)

about 400 million yrs.
| Big Bang Expansion




Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)
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Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)
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Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)
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Photon effective mass during the universe expansion : Resonances

Two contributions : free electrons and neutral atoms (H for simplicity)
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Because of the interplay of redshift and frequency, many crossing points

(resonances) are possible (7n,2y — m?b) depending on the WISP mass
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Photon effective mass during the universe expansion : Resonances

Two contributions : free electrons and neutral atoms (H for simplicity)
2 2 2 2 2
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Because of the interplay of redshift and frequency, many crossing points
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Photon Oscillations in a varying medium : Resonance

At first order in the conversion probability in a varying medium is
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Raffelt & Stodolsky
PRD 37, 1237 (1988)

If the argument is huge, many oscillations cancel out and the most relevant
contribution is the resonance, where this integral has a saddle point
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Photon Oscillations in a varying medium : Resonance

At first order in the conversion probability in a varying medium is
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Photon Oscillations in a varying medium : Resonance
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At zero order in the mixing, photons and WISPs are propagation eigenstates,
and the mixing can be treated as a inferaction vertex

The photon WISP transition can happen at any point between E and O
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions I

Resonance AFTER Recombination
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spectrum with 10°4 accuracy!
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Photon oscillations into WISPs are
frequency dependent and they leave
their imprint on the CMB spectrum




SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II

Resonance BEFORE Recombination (after BBN)

After the resonance, the primordial plasma

; : History of the Universe
can process the CMB distortions
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II

Resonance BEFORE Recombination (after BBN)

After the resonance, the primordial plasma
can process the CMB distortions

Three periods determined by the response
of the plasma to CMB distortions
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II

Resonance BEFORE Recombination (after BBN) P

After the resonance, the primordial plasma
can process the CMB distortions

Three periods determined by the response
of the plasma to CMB distortions

Photpns can redistribute up and down
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II

Resonance BEFORE Recombination (after BBN) P

After the resonance, the primordial plasma W1
can process the CMB distortions

Three periods determined by the response W2
of the plasma to CMB distortions

NOW /photon number is NOT conserved !
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+others...)
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BBN vs CMB(+others...)
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+other +SDSS+Ly-alpha)
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+other +SDSS+Ly-alpha)
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HIDDEN PHOTONS

At first order in § the resonant conversion probability in a varying medium is
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If many resonances...
the latter is the stronger
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AXION-LIKE PARTICLES

At first order in § the resonant conversion probability in a varying medium is
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Primordial Magnetic Field “Frozen”
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HIGH energy photons oscillate easier
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AXION-LIKE PARTICLES

At first order in § the resonant conversion probability in a varying medium is
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If many resonances...
the earlier is the stronger




AXION-LIKE PARTICLES

post-recombination \ pre-recombination
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Resonances after recombination
produce not only spectral distortions
but also anisotropies and polarization

(work in progress)

Resonances before recombination will
lost polarization signatures due to
Compton scattering ...
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AXION-LIKE PARTICLES
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AXION-LIKE PARTICLES
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Conclusions

- Resonant photon oscillations of the CMB can create a Hidden CMB

- Signatures are distortions of the spectrum, enhanced baryon to
photon ratio and effective neutrinos (CMB vs BBN)
*(first hint? points to meV masses)

- Axion Like particles require Primordial Magnetic Fields B
* If discovered -> Strong Bounds on g

Br 107Gl S 0 i o Ve

* 1f an ALP is discovered-> bounds on B
g SR C eV SN <

* Work in progress for polarization and anisotropies

-Other WISPs can be equally constrained
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