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Photon Oscillations and the WISP Zoo

E O

After a length L the photon-WISP conversion probability is given by

Weakly interacting slim particles (WISPs) can (and will) mix with photons

A photon emitted by E is a combination of two different waves propagating at 
different speeds ... the beating of the two waves produces oscillations 
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Photon Oscillations in a medium : Resonance

In a medium photons get an ``effective’’ mass (index of refraction)
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In the oscillation probability, the mass squared difference is what matters
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In the oscillation probability, the mass squared difference is what matters

In a suitable medium                 the amplitude of the Photon oscillations is m2
γ = m2

φ 1

Longest possible distances ...

Intense and controlled source ...

Homogeneous backgrounds (that we can tune?) ...

Small photon frequencies ...

RECIPE FOR A PHOTON OSCILLATION EXPERIMENT
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Longest possible distances ...

Intense and controlled(understood) source ...

Homogeneous backgrounds ...

Small photon frequencies ...
Primordial Magnetic Fields (?) 

RECIPE FOR A PHOTON OSCILLATION EXPERIMENT
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Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)

m2
γ = −2ω2(n− 1) = ω2

P − 2ω2(nH − 1)− 2ω2(n... − 1)
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Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)
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Photon effective mass during the universe expansion

Two contributions : free electrons and neutral atoms (H for simplicity)
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Photon effective mass during the universe expansion : Resonances

Two contributions : free electrons and neutral atoms (H for simplicity)

m2
γ = −2ω2(n− 1) = ω2

P − 2ω2(nH − 1)− 2ω2(n... − 1)
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Because of the interplay of redshift and frequency, many crossing points 
(resonances) are possible                   depending on the WISP mass(m2
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Photon Oscillations in a varying medium : Resonance

At first order in     the conversion probability in a varying medium is

limk→∞
∫

dtf(t)eıkg(t) = f(tr)
(
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kg′′(tr)

)1/2
eıπ/4 ; g′(tr) = 0

If the argument is huge, many oscillations cancel out and the most relevant 
contribution is the resonance, where this integral has a saddle point

Raffelt & Stodolsky
PRD 37, 1237 (1988)
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XE O

dA(γ → φ) = dL
δ(L)
2ω

eıψ(L)

ψ(L) =
∫ L

dL′ m
2
φ −mγ(L)2

2ω

At zero order in the mixing, photons and WISPs are propagation eigenstates, 
and the mixing can be treated as a interaction vertex

δ(L)
m2

γ(L)

The photon WISP transition can happen at any point between E and O
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SIGNATURES OF A HIDDEN CMB
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions I

FIRAS on COBE measured the CMB 
spectrum with 10^4 accuracy!

×105
FIRAS data 

(errors       )  

Photon oscillations into WISPs are 
frequency dependent and they leave 
their imprint on the CMB spectrum
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Ω!T

P

Resonance AFTER Recombination

After the resonance, the primordial plasma
cannot process the CMB distortions
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Resonance BEFORE Recombination (after BBN)

Three periods determined by the response
of the plasma to CMB distortions

After the resonance, the primordial plasma
can process the CMB distortions

Compton Scattering of direction fast

Compton Scattering of energy fast

Double Compton Scattering effective

RECREATION OF A BB SPECTRUM

KINETICAL EQUILIBRIUM REGAINED

µ− distortion

DIRECTION AND POLARIZATION AVERAGE

SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II
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After the resonance, the primordial plasma
can process the CMB distortions

Compton Scattering of direction fast

Compton Scattering of energy fast

Double Compton Scattering effective
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Three periods determined by the response
of the plasma to CMB distortions

SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II
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Resonance BEFORE Recombination (after BBN)

After the resonance, the primordial plasma
can process the CMB distortions

Compton Scattering of direction fast
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Photons can redistribute up and down

but photon number is conserved !

f → 1
e

ω
T ′ +µ − 1

SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II
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Resonance BEFORE Recombination (after BBN)

After the resonance, the primordial plasma
can process the CMB distortions

Compton Scattering of direction fast

Compton Scattering of energy fast

Double Compton Scattering effective

RECREATION OF A BB SPECTRUM

KINETICAL EQUILIBRIUM REGAINED

µ− distortion

DIRECTION AND POLARIZATION AVERAGE

Three periods determined by the response
of the plasma to CMB distortions

ω

NOW photon number is NOT conserved !

f → 1
e

ω
T ′ +µ − 1

0
(Double Compton erases the 
chemical potential away)

SIGNATURES OF THE FORMATION OF A HIDDEN CMB: spectral distortions II

Other signatures?

ω1

ω2
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

si
n

2θ

x ≡ ρφ

ργ

Oscillations transfer energy from 
photons to WISPS

Double Compton restores 
a BlackBody for photons 
at a different Temperature 

The energy stored in the WISP CMB 
contributes to the expansion of the universe
as if they were additional neutrinos

T after = (1− x)1/4T before

N eff
ν (x) =

Nν

1− x
+

8
7

x

1− x

(
11
4

)4/3

The number of effective neutrinos is both measured at BBN and at the CMB decoupling!
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+others...)

BBN results (PDG)

ηBBN = 5.7+0.8
−0.9 × 10−10

Nν = 3.046Assume

CMB results (Steigman)

ηCMB = 6.14+0.3
−0.25 × 10−10

(WMAP5+otherCMB+LSS+SN+HST)

N eff
ν = 2.9+2.0

−1.46
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−0.25 × 10−10
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N eff
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N eff
ν < 4.8 η

BBN

ηCMB > 0.75

x < 0.32x < 0.2
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+other +SDSS+Ly-alpha)

BBN results (PDG)

ηBBN = 5.7+0.8
−0.9 × 10−10

Nν = 3.046Assume

CMB results (Hamann)
(WMAP3+...+SDSS+Ly-alpha)

N eff
ν = 3.8+2.0

−1.6
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SIGNATURES OF THE FORMATION OF A HIDDEN CMB: Hidden Energy Matters

BBN vs CMB(+other +SDSS+Ly-alpha)

BBN results (PDG)

ηBBN = 5.7+0.8
−0.9 × 10−10

Nν = 3.046Assume

CMB results (Hamann)
(WMAP3+...+SDSS+Ly-alpha)

N eff
ν = 3.8+2.0

−1.6

x ! 0.1both suggest ...
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HIDDEN PHOTONS

At first order in     the resonant conversion probability in a varying medium isδ

P (γ → φ) = π δ2

m2
φωH(zr)

∣∣∣ d log m2
γ

d log(1+z)

∣∣∣
−1

z=zr

γ′γ

Hidden Photons

LI = −χ

2
FµνBµνa→ δ = χm2

γ′

P (γ → γ′)(RD) = χ2 const.
ω/T

Simple case, Xe = 1

m2
γ = (2× 10−14 eV)2(1 + z)3 |...| = 3 H ∝ (1 + z)(2,3/2)(RD,MD)

Low energy photons oscillate easier
Larger distortions at low energies

P (γ → γ′) = πχ2m2
γ

3Hω

∣∣∣
zres
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If many resonances...
the latter is the stronger

P ∝ 1
Hω
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|µ| > 9× 10−5

N eff
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post recombination weak coupling µ ∆N eff
ν

N eff
ν = 3.8
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AXION-LIKE PARTICLES

At first order in     the resonant conversion probability in a varying medium isδ

P (γ → φ) = π δ2

m2
φωH(zr)

∣∣∣ d log m2
γ

d log(1+z)

∣∣∣
−1

z=zr

Simple case, Xe = 1

m2
γ = (2× 10−14 eV)2(1 + z)3 |...| = 3 H ∝ (1 + z)(2,3/2)(RD,MD)

HIGH energy photons oscillate easier
Larger distortions at HIGH energies

P (γ → a) = π(gBTω)2

3Hω

∣∣∣
zres

BT = BT,0(1 + z)2

Primordial Magnetic Field ``Frozen” 

P (γ → a)(RD) = (gBT,0)2 ω
T × const.
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AXION-LIKE PARTICLES

Resonances after recombination 
produce not only spectral distortions 
but also anisotropies and polarization 

(work in progress) 

Resonances before recombination will 
lost polarization signatures due to 

Compton scattering ...
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AXION-LIKE PARTICLES
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Conclusions

- Resonant photon oscillations of the CMB can create a Hidden CMB

- Signatures are distortions of the spectrum, enhanced baryon to 
photon ratio and effective neutrinos (CMB vs BBN)
*(first hint? points to meV masses)

- Axion Like particles require Primordial Magnetic Fields B
* If discovered -> Strong Bounds on g

* If an ALP is discovered-> bounds on B

* Work in progress for polarization and anisotropies

-Other WISPs can be equally constrained

B ∼ 10−7G→ g < 10−13,−15GeV−1

g ∼ 10−11GeV−1 → B ! nG
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THANK YOU!
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