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Photon Axion Splitting in a transverse Gradient Magnetic Field
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(ω2 +∇2)A± = ±gBxω

Phase Fronts 

Constant Magnetic Field
k± ! ω ∓ gBx
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Gradient Magnetic Field (naively) Bx = B1y



Probability for an extended wave front
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For an experimental setup design: 

If you are limited by the maximum magnetic field 
(Loose a factor of 4 in the conversion probability...)



Calculation in the eikonal approximation
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Calculation in the eikonal approximation
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Probability in the EIKONAL approximation
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Conclusions

- Photon-Axion spliting is there (A+, A- splitting indeed)

- Relevant length scale for ray curvature is huge

- Expressions for the conversion probability (for lab sizes) are 
similar to those in a constant transverse field (B0) with 

- Exact calculation in the Eikonal approximation for a plane wave

- Also performed calculations for Gaussian beams (relevant for 
laser experiments)
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