

Superconducting magnets

Ezio Todesco

Accelerator Technology Department European Organization for Nuclear Research (CERN)

CONTENTS

- Basics of electromagnet design
- Superconducting materials
 - Current density versus magnetic field
- Aperture versus field or gradient
 - Simple approximated expressions for dipoles and quadrupoles
- What is available

BASICS OF ELECTROMAGNET DESIGN

 Electromagnets: magnetic field is generated by currents according to Biot-Savart law

Field is proportional to current density

Artist view of a dipole, from M. N. Wilson « Superconducting Magnets »

- Example 1. Dipole configuration (60° sector coil)
 - Field proportional to coil width
 - Field independent of aperture

$$B_{1} = -4 \frac{j\mu_{0}}{2\pi} \int_{0}^{\pi/3} \int_{r}^{r+w} \frac{\cos\theta}{\rho} \rho d\rho d\theta = -\frac{\sqrt{3}\mu_{0}}{\pi} jw$$

Cross-section of a dipole based on 60° sector coils

BASICS OF ELECTROMAGNET DESIGN

• Example II. Quadrupole configuration

$$G = -8\frac{j\mu_0}{2\pi} \int_{0}^{\alpha} \int_{r}^{r+w} \frac{\cos 2\theta}{\rho^2} \rho d\rho d\theta = -\frac{\sqrt{3}\mu_0}{\pi} j \ln\left(1 + \frac{w}{r}\right)$$

- Gradient proportional to j
- Gradient depends on *w/r*

Cross-section of a quad based on 30° sector coils

BASICS OF ELECTROMAGNET DESIGN

- The current density is the key parameter
 - Resistive magnets: water cooled copper or aluminum cable current densities of from 5 A/mm² to 100 A/mm² (with special cooling)
 - Superconducting magnets: current densities of $\sim 500 \text{ A/mm}^2 \rightarrow$
 - They can be much smaller and have much lower operational costs (only power consumption is to keep them cold)
 - but one disadvantage
 - Superconducting state is destroyed by magnetic field (Nb-Ti: ~ 13 T, Nb₃Sn: ~ 25 T)
 - The field in the coil is ~central field (dipole or solenoid) or ~gradient ×aperture radius (quadrupole)
 - Superconducting magnets are limited by the conductor *j* vs *B* property (critical surface)
 - This limitation is not present in resistive magnets
 - Very high field solenoids have to use resistive cables superconductors used in the low field regions to make them more compact and economic

CONTENTS

- Basics of electromagnet design
- Superconducting materials
 - Current density versus magnetic field
- Aperture versus field or gradient
 - Simple approximated expressions for dipoles and quadrupoles
- What is available

- Nb-Ti is the workhorse for 4 to 10 T
 - Can reach $\sim 2500 \text{ A/mm}^2$ at 6 T and 4.2 K or at 9 T and 1.9 K
 - Well known industrial process, good mechanical properties
 - Thousands of accelerator magnets have been built
 - 10 T field in the coil is the practical limit at 1.9 K

- Nb₃Sn: towards 20 T
 - Can reach up to $\sim 3000 \text{ A/mm}^2$ at 12 T and 4.2 K
 - Complex industrial process, higher cost, brittle and strain sensitive
 - ~25 short models for accelerator magnets have been built
 - ~20 T field in the coil is the practical limit at 1.9 K

- HTS materials: dreaming 40 T
 - Current density is low, but very little dependence on the magnetic field
 - Used in solenoids, used in power lines no accelerator magnets or models have been built small racetracks have been built

- The above quoted current densities cannot be reached in the coil
 - Bulk superconductor is unstable
 - Superconductor is in thin filaments (twisted) surrounded by copper
 - Strands make cables (twisted), and one has voids and insulation
- In general a cable has 1/3 of superconductor

Superconductor filaments inside a strand

Strands assembeld in a Rutherford cable

CONTENTS

- Basics of electromagnet design
- Superconducting materials
 - Current density versus magnetic field
- Aperture versus field or gradient
 - Simple approximated expressions for dipoles and quadrupoles
- What is available

DIPOLES

Why at 1.9 K Nb-Ti critical field is 13 T and we can get only 10 T?

$$B = j\gamma = wj\gamma_0$$

$$B_p = \lambda B = \lambda \gamma j$$

$$B_{ss} = \frac{\kappa c B_{c2}^*}{1 + \lambda \kappa c \gamma} \gamma = B_{c2}^* \frac{aw}{1 + aw}$$

$$B_{ss} = \frac{1000}{1 + aw}$$

$$B_{ss} = \frac{1000}{1 + aw}$$

- There is a saturation for large coil widths
 - For thin coils, doubling the coil width one doubles the field
 - For thick coils, doubling the coil width one has little gain
 - Ex. Nb-Ti at 1.9 K: doubling from 30 mm thick to 60 mm one increases the field only from 10 T to 11 T

DIPOLES

• In dipoles the field depends on the coil width *w* and on the critical surface – little dependence on aperture radius *r*

- Nb-Ti: 30 mm coil gives about 10 T (LHC)
- Nb₃Sn: 45 mm coil gives about 16 T (HD2 model)

QUADRUPOLES

 In quadrupoles for each aperture there is a maximal reachable gradient, obtained for a finite coil width

- Nb-Ti: 35 mm aperture radius, 260 T/m (LHC MQXA and MQXB)
- Nb₃Sn: 45 mm aperture radius, 260 T/m (TQ LARP models)

MAGNET LENGTH

- In principle, very long magnets can be built
 - No limitations from the superconducting technology
 - The limitation comes from the tooling, and related cost problems
- For Nb-Ti, magnets with lengths in the range of 10-15 m have been built
- For Nb₃Sn, only 1-m long models have been built
 - A 3.4 m long quadrupole is being built by the LARP program

A stack of LHC dipoles seen from the satellite

A 15m truck unloading a 27 tons LHC dipole

CONTENTS

- Basics of electromagnet design
- Superconducting materials
 - Current density versus magnetic field
- Aperture versus field or gradient
 - Simple approximated expressions for dipoles, quads and solenoids
- What is available

• Note1: short sample field is given for Nb3Sn, operational (about 80%) is given for Nb-Ti

	Aperture		Field (T)						
	r (mm)	diam (mm)	Operational	Short sample	L(m)	Units	Temp. (K)	M aterial	Comments
LHC MB	28.0	56.0	8.3	9.7	14.3	1248	1.9	Nb-Ti	Twin aperture
LHC MBX	40.0	80.0	3.8		9.5	5	1.9	Nb-Ti	
LHC MBRC	40.0	80.0	3.8		9.5	8	4.5	Nb-Ti	Twin aperture
LHC MBRS	40.0	80.0	3.8		9.5	4	4.5	Nb-Ti	
LHC MBRB	40.0	80.0	3.8		9.5	4	4.5	Nb-Ti	Twin aperture
RHIC MB	40.0	80.0	3.5	5.2	9.5	360	4.5	Nb-Ti	
RHIC D0	50.0	100.0	3.5		3.6	24	4.5	Nb-Ti	
RHIC DX	90.0	180.0	4.3		3.7	12	4.5	Nb-Ti	
HERA MB	37.5	75.0	4.7	6.4	8.8	416	4.5	Nb-Ti	
SSC MB	20.0	40.0	6.7	7.4	1.5	about 10	4.5	Nb-Ti	
SSC MB	25.0	50.0	6.7	7.4	1.5	about 10	4.5	Nb-Ti	
Tevatron MB	38.5	77.0	4.3		6.4	774	4.5	Nb-Ti	
CERN Fresca	43.9	87.8	10.0	10.2	1.0	1	1.9	Nb-Ti	
CERN Elin	27.5	55.0		10.0	1.0	1	4.2	Nb ₃ Sn	
MSUT	25.0	49.9		11.5	1.0	1	4.2	Nb ₃ Sn	
LBL D20	25.0	50.0		13.4	1.0	1	4.35	Nb ₃ Sn	
FNAL HFDA	21.8	43.5		11.0	1.0	6	4.2	Nb ₃ Sn	
LBL HD2	17.5	35.0		15.0	1.0	1	4.2	Nb ₃ Sn	

- Note1: short sample is an approximate estimate
- Note2: some magnets come with different lengths

RHIC MB: 40 mm aperture, ~5 T, 9.5 m long

- Main dipole of the RHIC
- 296 magnets built in 04/94 01/96

Tevatron MB: ~40 mm aperture, ~6 T, 6.4 m long

- Main dipole of the Tevatron
- 774 magnets built in ~1980

• Nb-Ti, 4.2 K

HERA MB: ~40 mm aperture, ~6.5 T, 9 m long

- Main dipole of the HERA
- 416 magnets built in ~1985/87

SSC MB model: ~25 mm aperture, ~7.5 T, 1.5 m long

- Main dipole of the ill-fated SSC
- 18 prototypes built in ~1990-5

LHC MB: ~30 mm aperture, ~10 T, 14 m long

- Main dipole of the LHC twin aperture
- 1276 magnets built in 2001-06

• Nb-Ti, 1.9 K

FRESCA test station: ~45 mm aperture, ~10.5 T, 1 m long

- Dipole for cable test station at CERN
- 1 magnet built in 2001

• Nb-Ti, 1.9 K

HFDA02-07 dipole models: ~20 mm aperture, ~11 T, 1m long

- Nb₃Sn model built at FNAL
- 6 models built in 2000-2004

MSUT dipole model: ~25 mm aperture, ~11.5 T, 1 m long

- Nb₃Sn model built at Twente University (NL)
- 1 model built in 1995

D20 dipole model: ~25 mm aperture, ~15 T, 1 m long

- Nb₃Sn model built at LBNL (USA)
- 1 model built in 1994, reached 13.4 T, present world record

HD2 model: ~20 mm aperture, ~16 T, 1 m long

- Nb₃Sn model built LBNL
- 1 model built in 2008 (13.3 T reached)

WHAT IS AVAILABLE: QUADRUPOLES

WHAT IS AVAILABLE: QUADRUPOLES

	Aperture		Gradient (T/m)						
	r (mm)	diam (mm)	Operational	Short sample	L(m)	Units	Temp. (K)	M aterial	Comments
LHC MQXA	35	70	215	265	6.4	18	1.9	Nb-Ti	
LHC MQXB	35	70	215	260	5.5	18	1.9	Nb-Ti	
LHC MQ	28	56	223	300	3.2	400	1.9	Nb-Ti	Twin aperture
LHC M QM	28	56	200	250	2.4-4.8	60	1.9	Nb-Ti	Twin aperture
LHC MQY	35	70	160	200	3.4	24	4.5	Nb-Ti	Twin aperture
RHIC M Q	40	80	71	110	1.13-1.83	420	4.3-4.6	Nb-Ti	
RHIC MQY	65	130	48	70	1.4-3.4	72	4.3-4.6	Nb-Ti	
Tevatron MQ	44.6	89.2	74		2.3	180	4.4	Nb-Ti	
Hera MQ	37.4	74.8	91	125	1.5-1.8	224	4.6	Nb-Ti	
SSC M Q	40	80	210	>260	5.0	a few	4.3	Nb-Ti	
LEP I MQC	90	180	36	55	2.0	8	4.3	Nb-Ti	
LEP II MQC	80	160	60	75	2.0	8	4.3	Nb-Ti	
ISR M Q	116	232	43		1.15-0.65	8	4.5	Nb-Ti	
LARP TQ	45	90	200	220	1	about 10	4.4	Nb3Sn	
LARP LQ	45	90	200	220	3.4	1	1.9	Nb3Sn	Foreseen 2009
LARP HQ	60	120	120	200 (220)	1	1	4.4 (1.9)	Nb3Sn	Foreseen 2009
LHC MQXC	60	120	120	150	10	16	1.9	Nb-Ti	Foreseen 2014

- Note1: short sample is approximate estimate
- Note2: some magnets come with different lengths

WHAT IS AVAILABLE: COMBINED FUNCTION

- In Japan combined functions superconducting magnets have been designed for a beam transfer line (JPARC) for neutrino experiment
 - These magnets give a dipole field (2.6 T) superimposed with and a quadrupole field (18.6 T/m) over a 180 mm aperture diameter
 - The transfer line has been successfully commissioned in 2009

JPARC magnet cross-section

JPARC magnet coil cross-section (Roxie view)

JPARC magnet coil end

CERN

CONCLUSIONS

- Nb-Ti gives fields up to 10 T, with lengths up to 15 m
- Nb₃Sn can give fields up to 16-20 T
 - 13.4 T present record
 - A lot of experience for 1 m long models, but no experience on long magnets
 - 3.4 m long being built and will be tested in 2009
- HTS could break the 20 T barrier
 - R&D needed, time scale of 10 years
- Apertures range: from 50 to 100 mm
 - Larger apertures are feasible in principle, but care should be taken for large electromagnetic forces
- Many magnets are available since accelerators have spare components