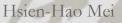


# The status and prospects of the Q & A experiment with some applications



Hsien-Hao Mei, Wei-Tou Ni July 15 2009 9:50 @ Appleby Lecture Theatre


### Q & A Collaboration

- Center for Gravitation and Cosmology:
  - Wei-Tou Ni (Dept. of Phys., National Tsing Hua University)
  - Hsien-Hao Mei (Dept. of Phys., National Tsing Hua University)
- Center for Measurement Standards :
  - Sheau-shi Pan (Industrial Technology Research Institu
  - Sheng-Jui Chen (Industrial Technology Research Inst
- Former member:
  - Jeah-Sheng Wu (Innolux Display Corp.)
- Location:
  - Rm. 005, Dept. of Phys., NTHU, Hsinchu, Taiwan, R
- Contact:
  - Tel: +886-3-5715131(ext. 33211) / Fax: +886-3-57230
  - E-mail: <u>wtni@phys.nthu.edu.tw</u> / <u>mei@phys.nthu.edu</u>









#### Outline

#### Motivation & Introduction • Jones Matrix optical model

- Pseudoscalar-photon interaction
- Birefringence vs Dichroism
- QED vs CME
- Axion-Like Particles prediction

#### • Q & A experiment

- Ellipsometry
- Fabry-Perot Interferometer
- Suspension and PDH

locking The status and prospects of the Q & A experiment

• Magnet with lock-in

- Wave-plate and Rotation nature
- FPI and intrinsic birefringence
- Signal after lock-in detection
- Current Status & Challenge
  - Stray field vs gas-line design
  - New magnet for ALP/QED
- Prospects
- Summary & Outlook

### Motivation Q(ED) & A(xion) experiment

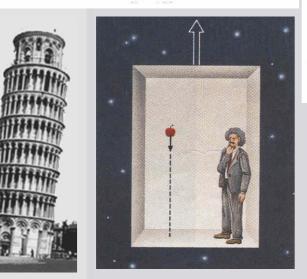
- (i) QED
- (ii) (Pseudo)scalar-Photon Interaction
- Bottom Up Approach: Markus Ahlers's talk Pecci & Quinn: PRL 38 1440 (1977) Weinberg: PRL 40 233 (1978) Wilczek: PRL 40 279 (1978) Kim: PRL 43 103 (1979) Dine *et al.*: PLB 104 1999 (1981) Shifman *el al.*: NPB 166 493 (1980)
- Top Down Approach: Joseph Conlon's talk String
- Phenomenological Study Approach From analysis of EPs (1973-1977) The status and prospects of the Q & A experiment with some applications

### field

VOLUME 38

A NON-METRIC THEORY OF GRAVITY\*

#### PHYSICAL REVIEW LETTERS


Wei-Tou Ni

Department of Physics, Montana State University

Bozeman, Montana

59715

December, 1973



14 FEBRUARY 1977

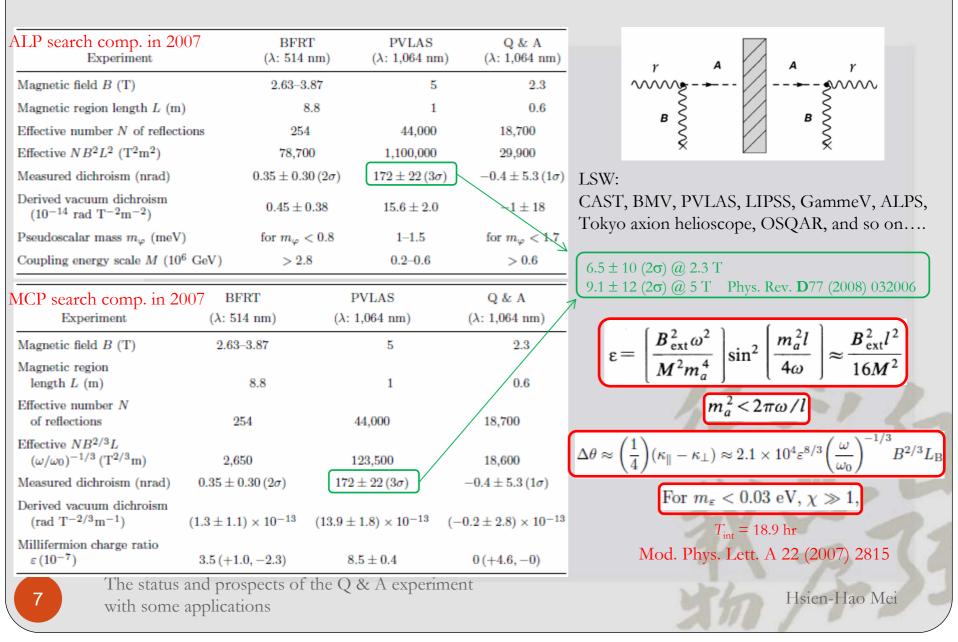
NUMBER 7

Equivalence Principles and Electromagnetism\*

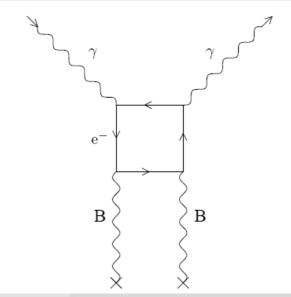
Wei-Tou Ni Department of Physics, Montana State University, Bozeman, Montana 59715, and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China† (Received 16 June 1976)

The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, I show that the universality of free-fall trajectories {Galileo weak equivalence principle (WEP[I])} does not imply the validity of the Einstein equivalence principle (EEP). However, WEP[I] plus the universality of free-fall rotation states (WEP[II]) does imply EEP. To test WEP[II] and EEP, I suggest that Eötvös-type experiments on polarized bodies be performed.

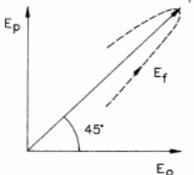
Named as "Axion" after 1978


 $L_{I} = -(1/16\pi)\phi F_{ij}F_{kl}e^{ijkl}$  $F \equiv A_{j,i} - A_{i,j} e^{0123} = 1$ 

Modified Maxwell Equations  $\rightarrow$  Polarization Rotation in EM Propagaton Constraints from CMB polarization observation  $\rightarrow$  Ni's talk tomorrow


The status and prospects of the Q & A experiment with some applications

#### Birefringence vs. Primakoff Dichroism effect $\varepsilon \cong \tan \varepsilon = \frac{\Delta \varsigma}{2} \sin 2\theta_m$ $\theta = \omega_m t$ Polarization Dichroism В Rotation $e^{-}$ Delbruck $\frac{B_{\rm ext}^2 l^2}{16M^2}$ $\frac{m_a^2 l}{4\omega}$ $\frac{B_{\rm ext}^2\omega^2}{M^2m_a^4}$ **ALPs:** $sin^2$ $m_a^2 < 2\pi\omega/l$ $\epsilon =$ scattering В B В В $\mathbf{E}_{i, \prime \prime} = \mathbf{E}_{i} \cos \theta_{m}$ $E_{o, //} = exp(-\zeta_{//})E_{i, //}$ θ<sub>m</sub>=ω<sub>m</sub>t <u>E</u>i → X y · 2a $\mathbf{E}_{i,\perp} = \mathbf{E}_i \sin \theta_m$ $\mathbf{E}_{0,\perp} = \exp(-\varsigma_{\perp})\mathbf{E}_{i,\perp}$ $\Delta \varsigma = \varsigma_{//-} \varsigma_{\perp} \ll 1$ 2b $\frac{1}{2}\sin 2\theta = \psi_0 \sin 2\theta$ $\delta = 2\pi \frac{L}{\lambda} \Delta n$ $\Delta n \equiv n_{\parallel} - n_{\perp}$ Ľχ $2E_{y,max}$ α Ellipticity **.** X Birefringence Phase retardation **E**(t) $\psi = \frac{1}{2} \left[ \frac{B_{\text{ext}}^2 \omega^2}{M^2 m_a^4} \right] \left[ \frac{m_a^2 l}{2\omega} - \sin \right]$ $\frac{m_a^2 l}{2\omega}$ ALPs: $(B_{\rm ext}m_a)^2 l^3$ $96\omega M^2$ $2E_{x,max}$ The status and prospects of the Q & A experiment Hsien-Hao Mei with some applications

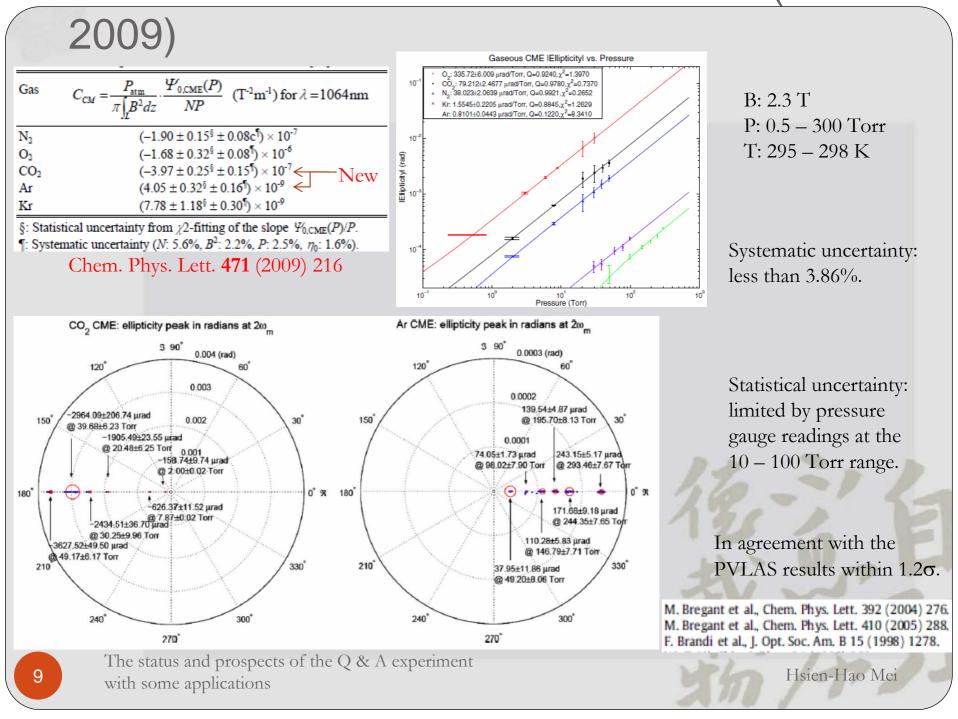

## 2007)

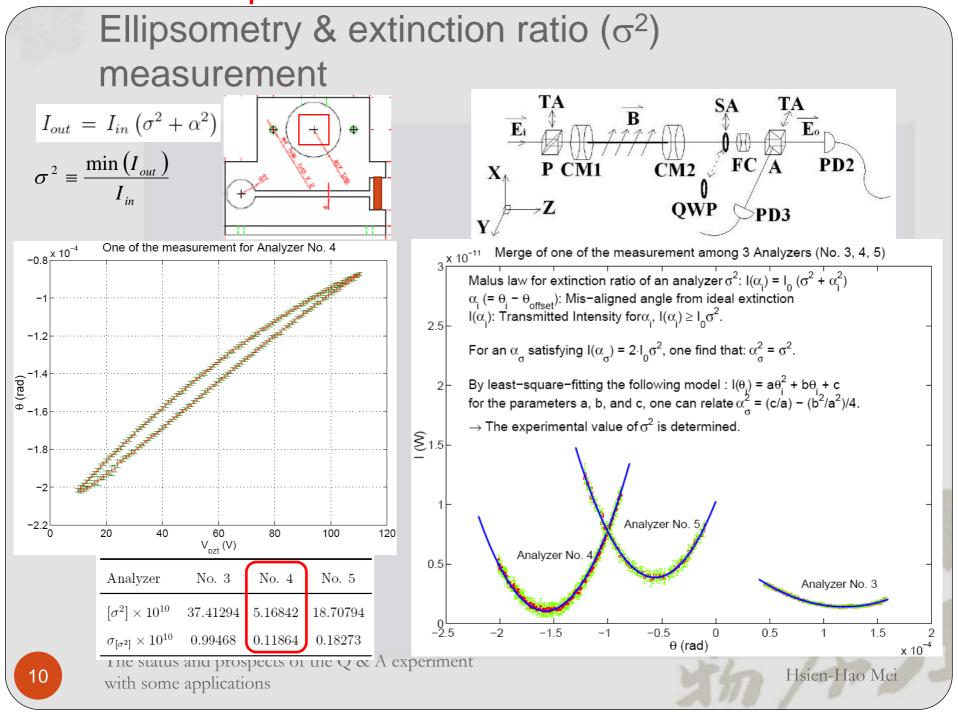


#### Quantum electrodynamics (QED)

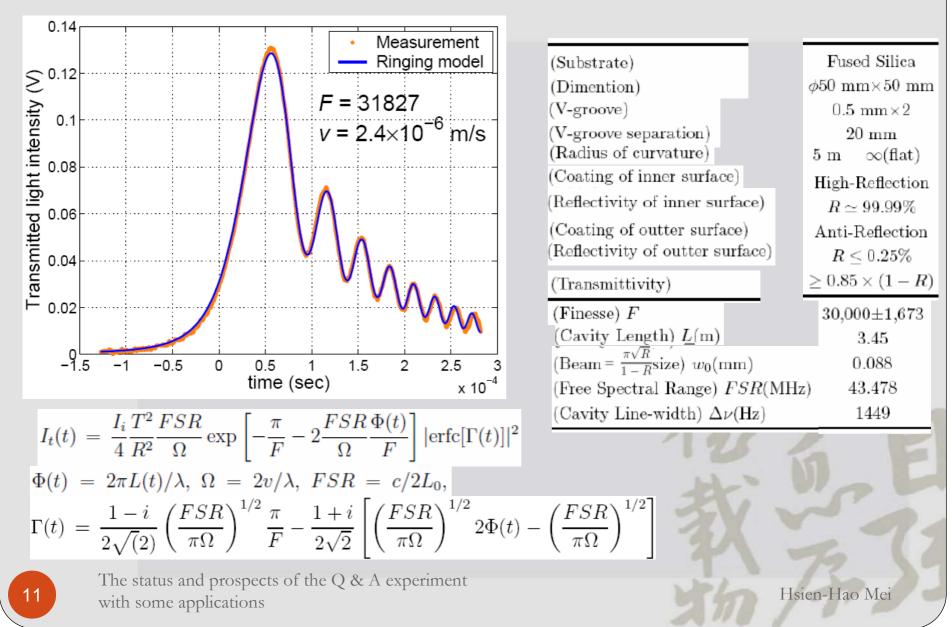


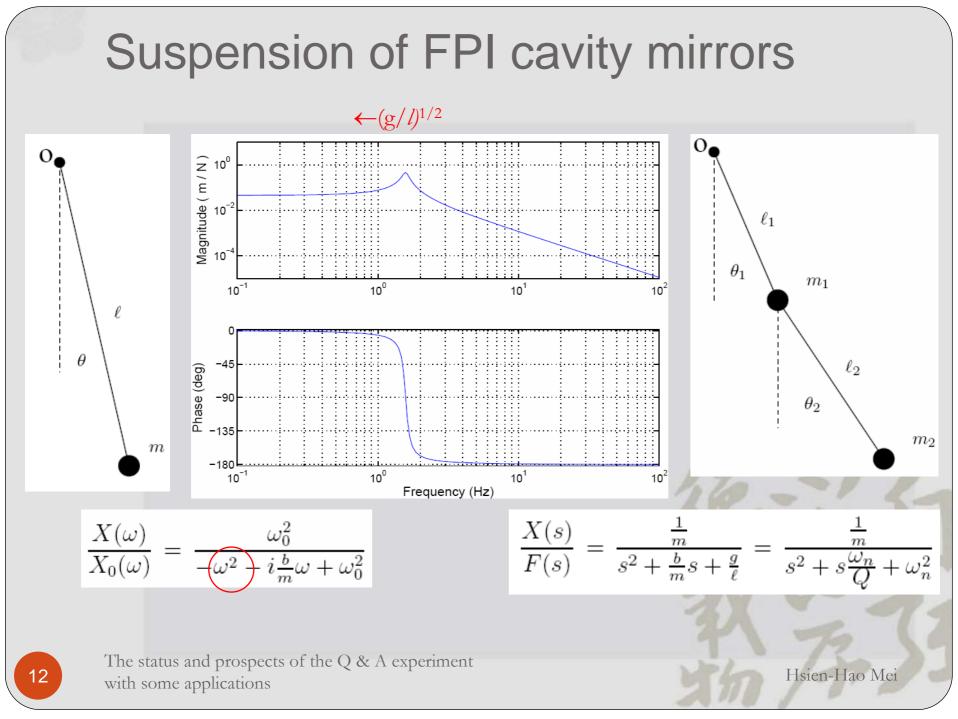
#### Cotton-Mouton effect (CME)





The status and prospects of the Q & A experiment with some applications

Euler and Heisenberg (1936):


$$\begin{split} L_{eff} &= \frac{2\alpha^2}{45(4\pi)^2 m_e^4} [(\mathbf{E}^2 - \mathbf{B}^2) + 7(\mathbf{E} \cdot \mathbf{B})^2] \\ \Delta n_{QED} &= \frac{\alpha}{30\pi B_c^2} B_{ext}^2 \\ B_c &= \frac{m_e^2 c^2}{e\hbar} = 4.42 \times 10^9 \text{ T} \\ \Delta n_{QED} \ll 1; \quad \Delta n_{QED} \propto B_{ext}^2 \\ \Delta n_{QED,u} &= \Delta n_{QED} |_{B=1\,\mathrm{T}} \simeq 4 \times 10^{-24} \\ \mathrm{CME \ of \ nitrogen:} \quad \Delta n_u = -2.66 \times 10^{-13} \end{split}$$
11
$$\Delta n \equiv n_{\parallel} - n_{\perp} = \Delta n_u (B/1\,\mathrm{T})^2 (P/1\,\mathrm{atm}) \\ \psi &= \Delta n_u \left(\frac{2F}{\lambda}\right) \left[ \int_{L_B} \left(\frac{B_T(L)}{1(T)}\right)^2 dL \right] \left(\frac{P_{gas}}{P_{atm}}\right) \end{split}$$

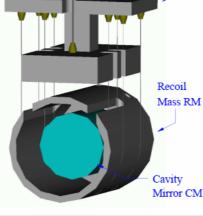

Hsien-Hao Mei



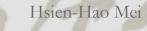


#### Fabry-Perot Interferometer (FPI) Specs (General Optics)

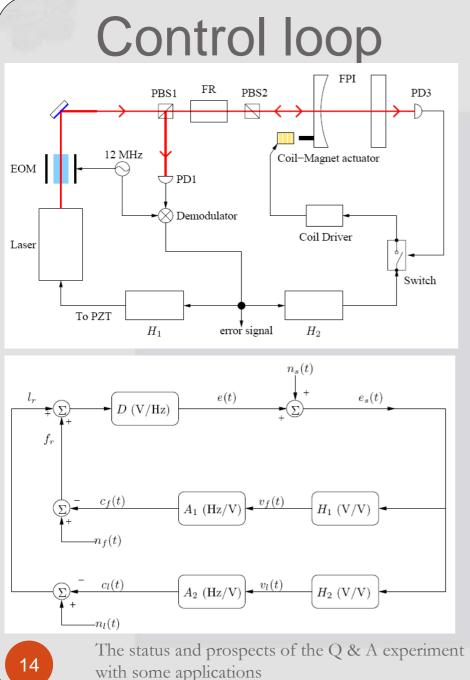


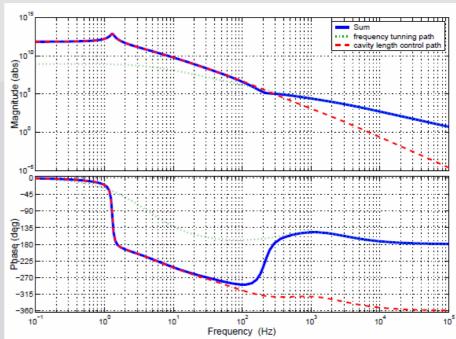



#### Suspension system




X-pendulum: Designed by TAMA Collaboration Simulate simple pendulum with long wire Resonance: 0.24 Hz & 0.29 Hz (2-dimention) Displacement: 80 µm (no damping)  $\rightarrow$ 3 µm (eddy current) ≈ 6 FSR Double pendulum: Intermidiate mass (IM) Cavity mirror (CM), Recoil mass (RM) Main Resonance: 1.53 Hz & 4 Hz Isolation ratio by (X-pendulum): 27 & 72


#### Pitch Yaw Tungsten Wires Intermediate Mass IM

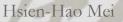







The status and prospects of the Q & A experiment with some applications






Nd-YAG single mode laser ( $\lambda = 1064 \text{ nm}, P = 600 \text{ mW}$ ) Pound-Drever-Hall locking ( $\rightarrow$  D. Tanner's talk: resonant enhanced  $\gamma$  reg.) Laser frequency  $H_1A_1$ : Dynamic range  $\pm 200 \text{ MHz}$ Control band width 13 kHz FPI cavity length  $H_2A_2$ : Dynamic range  $\pm 1 \text{ mm}$ Control band width 220 Hz Best performance:  $H_1A_1 >> H_2A_2$ Hsien-Hao Mei

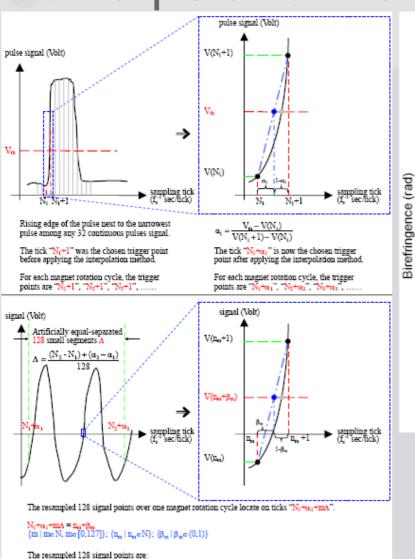
#### Lasing of the system (Film)



The status and prospects of the Q & A experiment with some applications

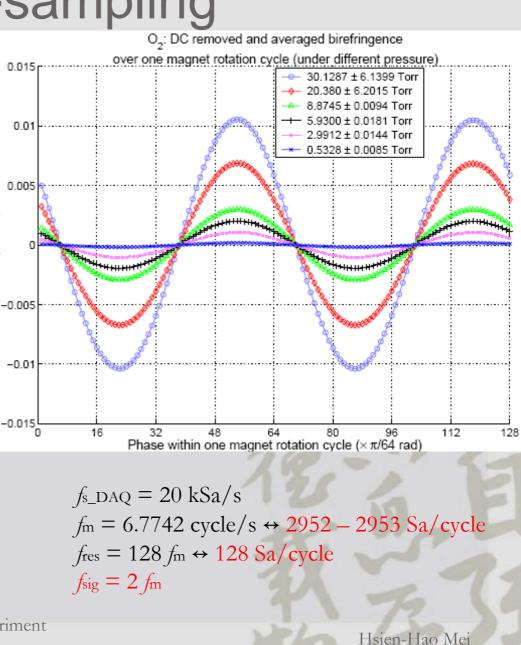


#### Magnet with motor

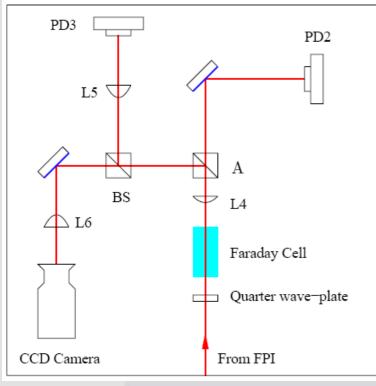

| <b>皮帯輪</b><br><b>駆動馬達</b><br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・ |                              | 旋轉<br>,<br>聘<br>光 | 真測環<br>久磁錯<br>速偵測<br>學元件 |
|--------------------------------------------------------------------------------------------|------------------------------|-------------------|--------------------------|
| $B_T$ (T)                                                                                  |                              | $\geq 2.0$        |                          |
| $\frac{B_A}{B_T}$                                                                          |                              | $\leq 0.1\%$      |                          |
| Leakage of $B_T$ or $B_A$                                                                  | ()                           |                   |                          |
| at 10 mm away from                                                                         | magnet (T)                   | $\leq 10^{-4}$    |                          |
| Length L $(mm)$                                                                            |                              | 600               |                          |
| Height H (mm)                                                                              |                              | 1100              |                          |
| Axial free diameter $\phi$                                                                 | (mm)                         | 25.4              |                          |
| Rotating Speed (rev/                                                                       | s)                           | 0-10              | _                        |
| Model                                                                                      | BSM100B-4250                 |                   |                          |
| Torgue cont. stall                                                                         | 23 Nm                        |                   |                          |
| Rated Speed                                                                                | 1200 RPM                     |                   |                          |
| Current Cont. Stall                                                                        | 12  A rms                    |                   |                          |
| Peak Current                                                                               | $33 \mathrm{A} \mathrm{rms}$ |                   |                          |
|                                                                                            | 1                            | C 1 0 0           |                          |

Transverse magnetic field vs. Position ■ 2004 measurement (Factory).  $\int B^2 dL = \sum_{i=1}^{N} B_i^2 \Delta L = 2.7205 (T^2m)$ . 2008 measurement (Laboratory).  $\int B^2 dL = \sum_{i=1}^{N} B_i^2 \Delta L = 2.5315 (T^2m)$ . 2.5 Transverse magnetic field B (Tesla) 0.5 1.3 1.4 1.5 1.8 ĭ.1 1.2 1.6 1.7 1.9 Position (m) (Position = 0 denotes surface of CM,; Position = 3.45 denotes surface of CM,) Photo-receiver beam spliter fe. Aluminum Donut Steering Mirror 633 nm Laser

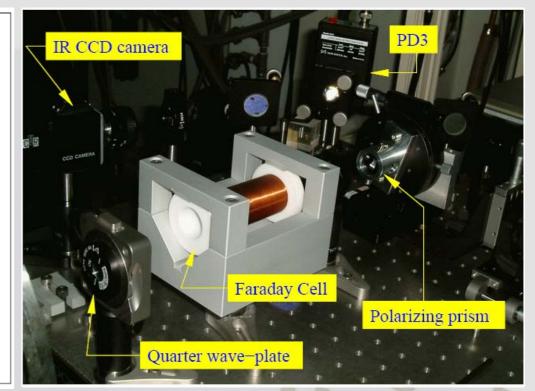
Hsien-Hao Mei


The status and prospects of the Q & A experiment with some applications

#### Interpolation re-sampling




 $V(\underline{N_1+\alpha_1+m\Delta}) = V(\underline{n_m+\beta_m}) = V(\underline{n_m})(1-\beta_m)+V(\underline{n_m+1})\beta_m$ 


The status and prospects of the Q & A experiment with some applications



### **Detection bench elements**



FC (Faraday Cell): modulation depth  $\eta_0 = I_{FC} \times 0.019 \text{ rad/A}$ A (Analyzer): extinction ratio  $\sigma^2 = 92.87 \text{ dB}$ resolution (roll) = 174.5 µrad



QWP (Quarter wave plate): resolution (roll) = 200 µrad VWP (Variable wave plate): resolution (roll) = 3.5 mrad resolution (tilt for retardation) = 6.28 mrad enhanced by vFocus 9852 mount for tilt: 615 µrad

The status and prospects of the Q & A experiment with some applications

# Wave-plate-like & Rotation-like nature

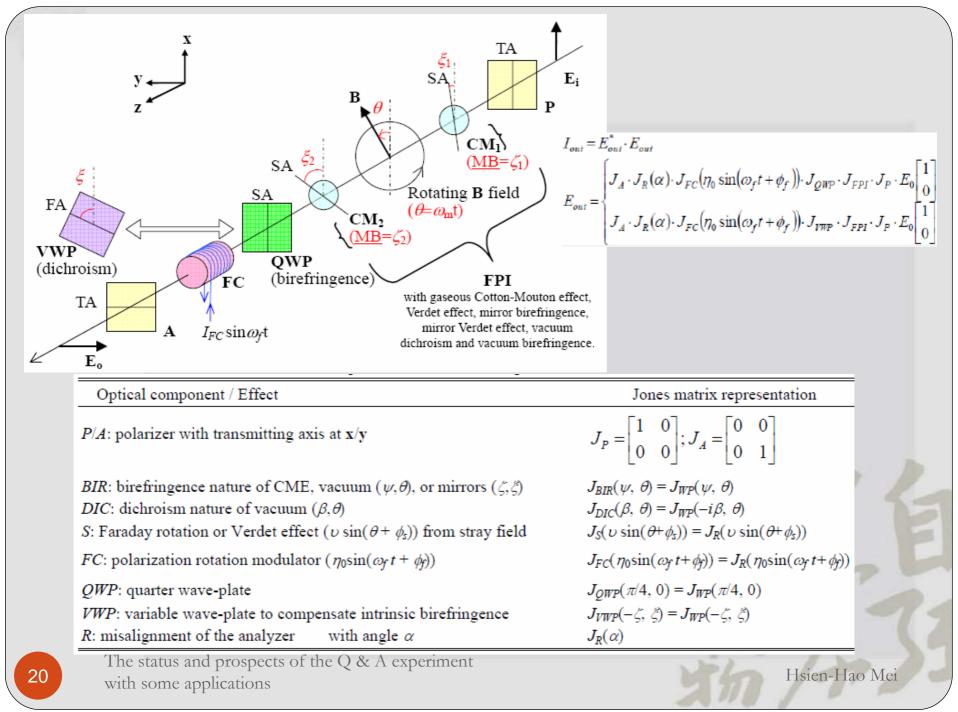
$$J_{\Pi P}(\frac{\beta}{2}, 9) = J_{R}(9) \begin{bmatrix} e^{i\frac{\beta}{2}} & 0\\ 0 & e^{-i\frac{\beta}{2}} \end{bmatrix} J_{R}(-9)$$

$$J_{\Pi P}(\frac{\beta}{2}, 9) \begin{bmatrix} J_{\Pi P}(N\frac{\beta}{2}, 9) = \cos N\frac{\beta}{2}I_{2} + i\sin N\frac{\beta}{2} \begin{bmatrix} \cos 2\beta & \sin 2\beta\\ \sin 2\beta & -\cos 2\beta \end{bmatrix}$$

$$J_{DIC}(\frac{\xi}{2}, 9) = J_{\Pi P}(-i\frac{\xi}{2}, 9)$$

$$\begin{bmatrix} J_{R}(\varphi) \end{bmatrix}^{N} = J_{R}(N\varphi)$$

$$\begin{bmatrix} J_{R}(\varphi) \end{bmatrix}^{N} = J_{R}(N\varphi) \begin{bmatrix} \cos 2\beta & \sin 2\beta\\ \sin 2\beta & -\cos 2\beta \end{bmatrix} + O(N^{2}\delta^{2}) + \cdots$$


$$\begin{bmatrix} J_{\Pi P}(\frac{\beta}{2}, 9) \end{bmatrix}^{N} = I_{2} + iN\frac{\beta}{2} \begin{bmatrix} \cos 2\beta & \sin 2\beta\\ \sin 2\beta & -\cos 2\beta \end{bmatrix} + O(N^{2}\delta^{2}) + \cdots$$

$$\begin{bmatrix} J_{R}(\varphi) \end{bmatrix}^{N} = I_{2} + iN\varphi \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} + O(N^{2}\varphi^{2}) + \cdots$$

$$\begin{bmatrix} J_{\Pi P}(\frac{\beta}{2}, 9) \cdot J_{R}(\varphi) \end{bmatrix}^{N} \equiv I_{2} + iN\frac{\beta}{2} \begin{bmatrix} \cos 2\beta & \sin 2\beta\\ \sin 2\beta & -\cos 2\beta \end{bmatrix} + iN\varphi \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \equiv \begin{bmatrix} J_{R}(\varphi) \cdot J_{\Pi P}(\frac{\beta}{2}, 9) \end{bmatrix}^{N}$$

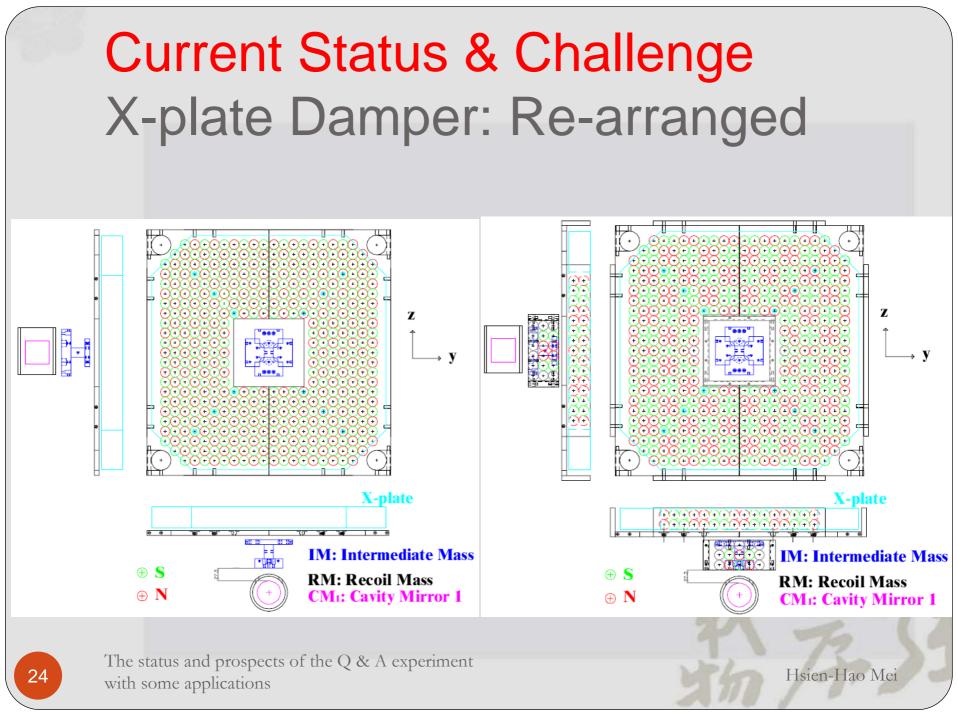
$$N\delta < 1 \text{ and } N\varphi < 1$$

The status and prospects of the Q & A experiment with some applications

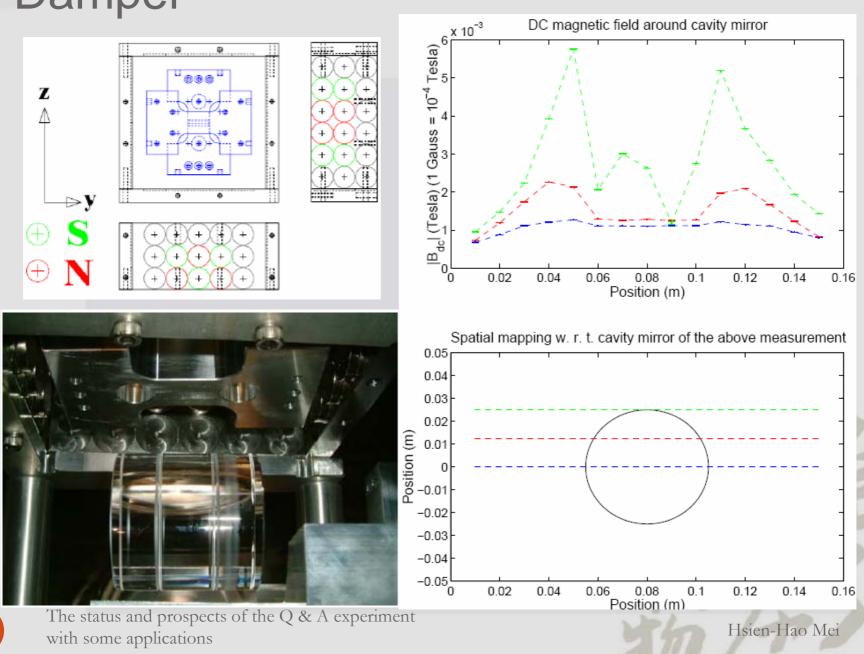


#### **Detected** intensity

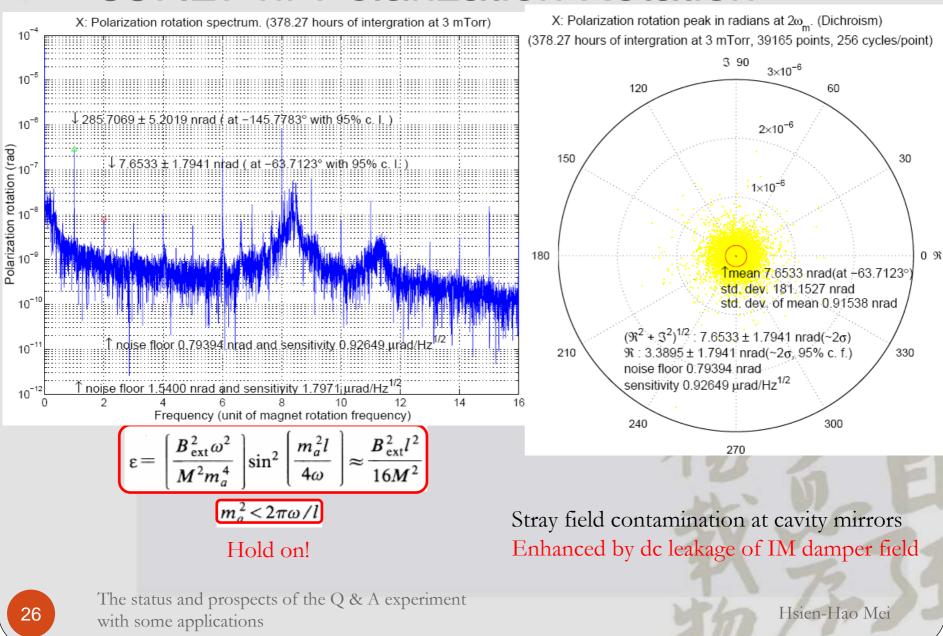
Table 2. Detected  $I_{out}$  components at major frequencies preserved to  $\rho^3$  where  $\rho^n$  denotes for combinations of the products generated from  $\psi_0$ ,  $\beta_0$ ,  $\zeta_0$ ,  $\upsilon_0$ ,  $\upsilon_2$ , and  $\upsilon_{M2}$  to order *n*.


| com                                    | sinatons of the products generated from $\varphi_0, \varphi_0, \varphi_0, \varphi_0, \varphi_2$ , and $\varphi_{M2}$ to order $n$ .                                                                                                       |                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Iout                                   | Birefringence detection at PD2 with QWP                                                                                                                                                                                                   |                        |
| I <sub>dc</sub>                        | $I_0 \left[ \sigma_{ext}^2 + \frac{1}{2} \left[ \eta_0^2 + N^2 \left( \psi_0^2 + \beta_0^2 + \psi_0^2 + \psi_0^2 + \psi_2^2 \right) + \psi_M^2 + \psi_{M2}^2 \right] + \left( \alpha + N \zeta_0 \sin 2\xi \right)^2 \right]$             |                        |
| $I_{\omega_f \pm \omega_m}$            | $I_0\eta_0 (N\upsilon_0 + \upsilon_M) \begin{bmatrix} \pm N\zeta_0 \cos 2\xi \cos((\omega_f \pm \omega_m)t + (\phi_f \pm \phi_s)) \\ \mp \frac{1}{2}N\psi_0 \cos((\omega_f \pm \omega_m)t + (\phi_f \mp \phi_s)) \end{bmatrix}$           | Tek JL 🖬 Trigid M Post |
| $I_{\omega_f \pm 2\omega_m}$ $I_0 I_0$ |                                                                                                                                                                                                                                           | hand.                  |
| $I_{\omega_f}$                         | $-2I_0\eta_0(\alpha + N\zeta_0\sin 2\xi)\sin(\omega_f t + \phi_f) > 0$                                                                                                                                                                    | 3*<br>CHT 500V M 100-  |
| $I_{2\omega_f}$                        | $-\frac{1}{2}I_0\eta_0^2 \Big[\cos(2\omega_f t + 2\phi_f)\Big]$                                                                                                                                                                           | CH3 200mV              |
| Iout                                   | Dichroism detection at PD2 with VWP                                                                                                                                                                                                       |                        |
| I <sub>dc</sub>                        | $I_0 \left[ \sigma_{ext}^2 + \frac{1}{2} \left[ \eta_0^2 + N^2 \left( \psi_0^2 + \beta_0^2 + \psi_0^2 + \psi_0^2 + \psi_2^2 \right) + \psi_M^2 + \psi_{M2}^2 \right] \right]$                                                             |                        |
| $I_{\omega_f^{\pm}\omega_m}$           | $I_0\eta_0 (N\upsilon_0 + \upsilon_M) \begin{bmatrix} \mp \cos((\omega_f \pm \omega_m)t + (\phi_f \pm \phi_s)) \\ \mp \frac{1}{2}N\beta_0 \cos((\omega_f \pm \omega_m)t + (\phi_f \mp \phi_s)) \end{bmatrix}$                             | 6 -                    |
| $I_{\omega_f \pm 2\omega_m}$           | $I_0 \eta_0 \begin{bmatrix} \mp N\beta_0 \sqrt{1 + 4\alpha^2} \cos((\omega_f \pm 2\omega_m)t + (\phi_f \pm \tan^{-1} 2\alpha)) \\ \mp (N\upsilon_2 + \upsilon_{M2}) \cos((\omega_f \pm 2\omega_m)t + (\phi_f \pm 2\phi_s)) \end{bmatrix}$ | どん                     |
| $I_{\omega_f}$                         | $\frac{-2I_0\eta_0\alpha\sin(\omega_f t + \phi_f)}{0} > 0$                                                                                                                                                                                | El                     |
| I <sub>2wf</sub>                       | $-\frac{1}{2}I_0\eta_0^2 \Big[\cos(2\omega_f t + 2\phi_f)\Big]$                                                                                                                                                                           | 2                      |
| The sta                                | tus and prospects of the O & A experiment                                                                                                                                                                                                 |                        |

The status and prospects of the Q & A experiment with some applications




#### Lock-in detection


| Source                                                                                      | Channel                                     | Birefringence                                                                                                                                                                                                                             | Birefringence detection lock-in amplified signal                                                                                                                                                                      |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LA <sub>1</sub>                                                                             | <i>X</i> <sub>1</sub>                       | $\kappa_{\rm LA} \cdot I_0 \eta_0 \left[ N \psi_0 \sin 2\omega_m t - N \zeta_0 \left[ N \beta_0 \sin 2\omega_m t - N \zeta_0 \right] \right] + (N \psi_0 \sin 2\omega_m t) $                                                              | $\frac{\ln(2\omega_m t + 2\xi) + (N\upsilon_2 + \upsilon_{M2})\cos 2\xi\sin(2\omega_m t + 2\phi_s)}{\log + \upsilon_M)\cos 2\xi\left[\cos(\omega_m t + \phi_s) - \frac{1}{2}N\psi_0\cos(\omega_m t - \phi_s)\right]}$ |  |  |
| LA <sub>1</sub>                                                                             | $Y_1$                                       | 0                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |  |  |
| LA <sub>2</sub>                                                                             | $X_2$                                       | 0                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |  |  |
| LA <sub>2</sub>                                                                             | <i>Y</i> <sub>2</sub>                       | $\kappa_{ m LA} \cdot rac{1}{4} I_0 \eta_0^2$                                                                                                                                                                                            |                                                                                                                                                                                                                       |  |  |
| Source                                                                                      | Channel                                     | Dichroism detection lock-in amplified signal                                                                                                                                                                                              |                                                                                                                                                                                                                       |  |  |
| LA <sub>1</sub>                                                                             | <i>X</i> <sub>1</sub>                       | $\kappa_{\text{LA}} \cdot I_0 \eta_0 \left[ \frac{N\beta_0 \sqrt{1 - 4\alpha^2} \sin(2\omega_m t + \tan^{-1} 2\alpha)}{+ (N\upsilon_0 + \upsilon_M) [\sin(\omega_m t + \phi_s) - \frac{1}{2}N\beta_0 \sin(\omega_m t - \phi_s)]} \right]$ |                                                                                                                                                                                                                       |  |  |
| LA <sub>1</sub>                                                                             | $Y_1$                                       | 0                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |  |  |
| $LA_2$                                                                                      | $X_2$                                       | 0                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |  |  |
| $LA_2$                                                                                      | <i>Y</i> <sub>2</sub>                       | $\kappa_{\rm LA} \cdot \frac{1}{4} I_0 \eta_0^2$                                                                                                                                                                                          |                                                                                                                                                                                                                       |  |  |
|                                                                                             |                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                       |  |  |
| $\psi(t) = \frac{\eta}{2}$                                                                  | $\frac{Y_0}{4} \cdot \frac{X_1(t)}{Y_2(t)}$ |                                                                                                                                                                                                                                           | Gas $C_{CM} = \frac{P_{\text{atm}}}{\pi \int_{L} B^2 dz} \cdot \frac{\Psi_{0,CME}(P)}{NP}  (\text{T}^{-2}\text{m}^{-1}) \text{ for } \lambda = 1064 \text{ nm}$                                                       |  |  |
| - ( )                                                                                       |                                             |                                                                                                                                                                                                                                           | $N_2$ (-1.90 ± 0.15 <sup>§</sup> ± 0.08c <sup>§</sup> ) × 10 <sup>-7</sup>                                                                                                                                            |  |  |
| $\Psi(\omega) = \mathcal{F}(\psi(t))$                                                       |                                             |                                                                                                                                                                                                                                           | O <sub>2</sub> $(-1.68 \pm 0.32^{\circ} \pm 0.08^{\circ}) \times 10^{-6}$                                                                                                                                             |  |  |
| $\Psi_0 = \Psi(2\omega_m) = N\psi_0 \text{ (or } N\beta_0 \text{ for dichroism detection)}$ |                                             | <i>w.</i> (or <i>NB</i> , for dichroism detection)                                                                                                                                                                                        | CO <sub>2</sub> $(-3.97 \pm 0.25^{\circ} \pm 0.15^{\circ}) \times 10^{-7}$<br>Ar $(4.05 \pm 0.32^{\circ} \pm 0.16^{\circ}) \times 10^{-9}$                                                                            |  |  |
| 10-1                                                                                        | (200m) 11                                   | $\varphi_0(011, p_0$ for the model indeceed on )                                                                                                                                                                                          | Kr $(7.78 \pm 1.18^{\circ} \pm 0.30^{\circ}) \times 10^{-9}$                                                                                                                                                          |  |  |
|                                                                                             |                                             |                                                                                                                                                                                                                                           | <ul> <li>§: Statistical uncertainty from χ2-fitting of the slope Ψ<sub>0,CME</sub>(P)/P.</li> <li>¶: Systematic uncertainty (N: 5.6%, B<sup>2</sup>: 2.2%, P: 2.5%, η<sub>0</sub>: 1.6%).</li> </ul>                  |  |  |
|                                                                                             | tatus and pr<br>some applic                 | cospects of the Q & A experiment ations                                                                                                                                                                                                   | Hsien-Hao Mei                                                                                                                                                                                                         |  |  |

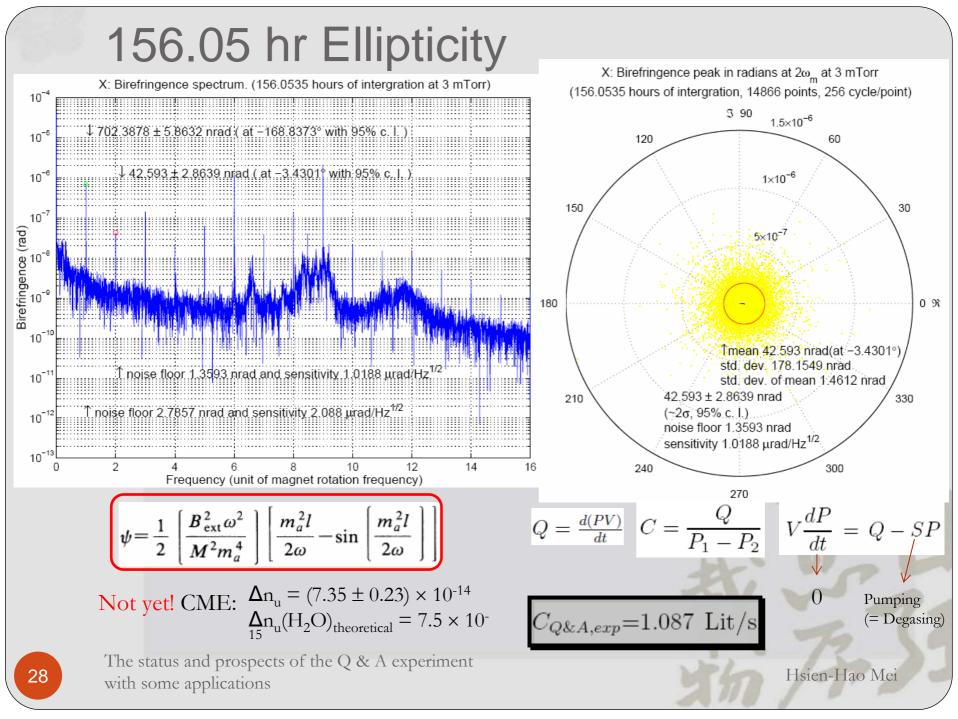


#### Damper

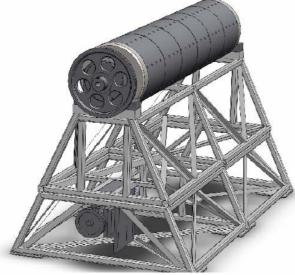


#### 387.27 hr Polarization Rotation




#### design

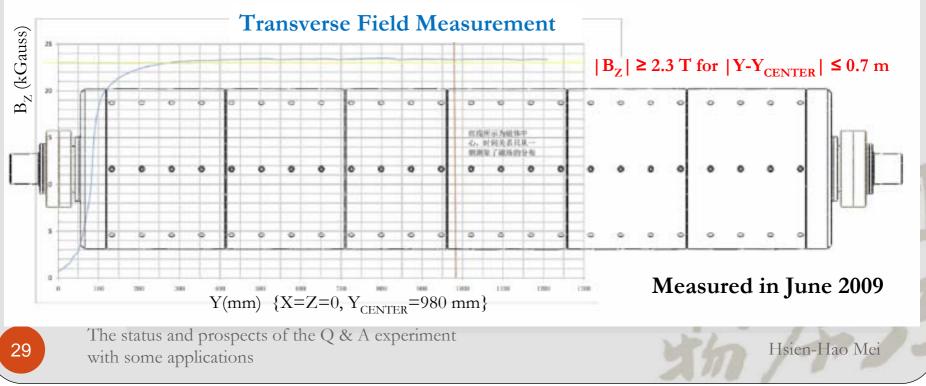



DC magnetic field measured at cavity mirror position:  $B_{CM} = 41.71 \ \mu T \rightarrow 100 \text{ times smaller than 5 mT leakage} \rightarrow B_{EARTH} = 31.63 \ \mu T$  as a comparison using the same probe

The status and prospects of the Q & A experiment with some applications



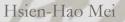



#### 1.8 m new magnet ready for shipping:



Main specs for design: B = 2.3 T L = 1.8 m  $\omega_m/2\pi = 600 \text{ rpm}$ 

Main body lies on its supporting structure.

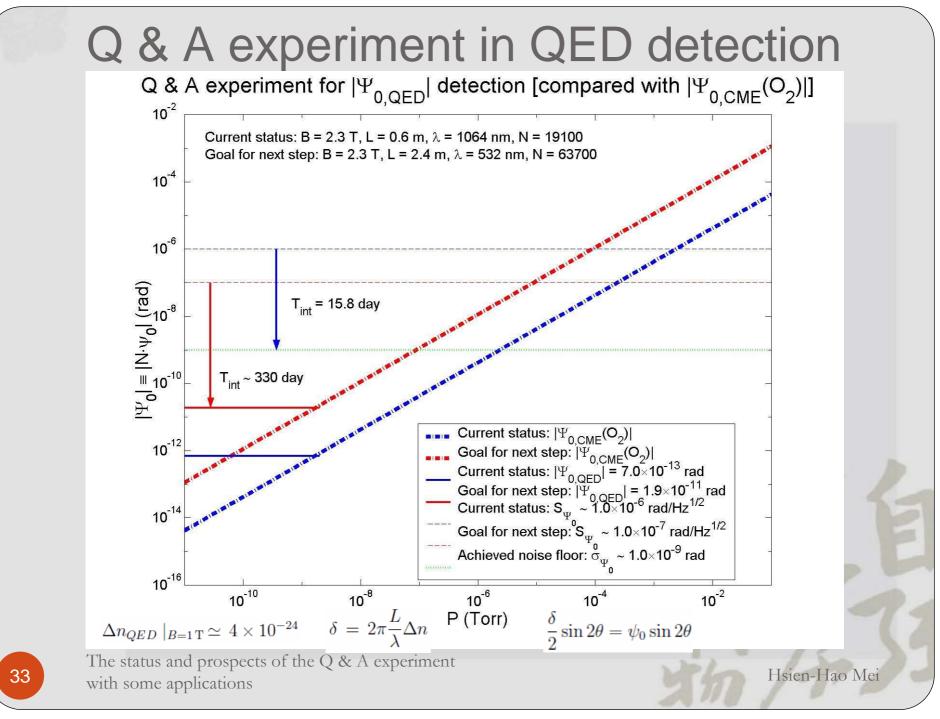





#### Operation test for 600 rpm (film)

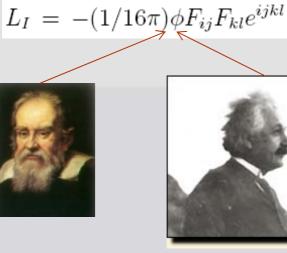


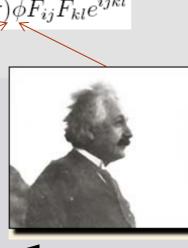
The status and prospects of the Q & A experiment with some applications

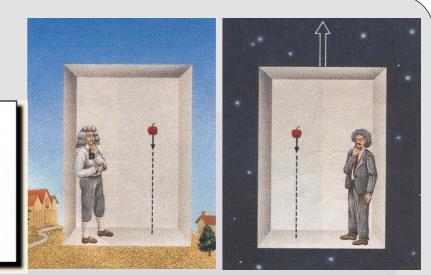



#### Prospects Q & A experiment from now on:

|                                                                                                                     | achieved                                           | implementing                                                 | next stage                                           |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| Length of cavity (L <sub>FP</sub> )                                                                                 | 3.5 m                                              | 7 m                                                          | 7 m                                                  |
| Length of magnetic active zone (L)                                                                                  | 0.6 m                                              | 2.4 m                                                        | <b>4.2</b> m                                         |
| Laser wavelength ( $\lambda$ ; together with optics)                                                                | 1064 nm                                            | 532 nm                                                       | 532 nm                                               |
| Finesse of cavity mirrors (F)                                                                                       | 30000                                              | <b>10</b> <sup>5</sup>                                       | 10 <sup>5</sup>                                      |
| Number of passage ( $\mathbf{N} = 2\mathbf{F}/\pi$ )                                                                | 19100                                              | 63700                                                        | 63700                                                |
| Magnet's rotational modulation ( $f_{\rm m} = \omega/2\pi$ )                                                        | 7 rps                                              | <b>10 rps</b>                                                | <b>20 rps</b>                                        |
| Sensitivity $(\mathbf{S}_{N\psi_0} \text{ or } \mathbf{S}_{N\beta_0})$                                              | ~ 1 $\mu rad/Hz^{1/2}$ from the 378 hr integration | <b>10 nrad/Hz</b> <sup>1/2</sup><br>↓ Mirrors' birefringence | 2 nrad/Hz <sup>1/2</sup><br>shot noise limit @ 0.1 W |
| Integration time $(\mathbf{T}_{tin})$                                                                               | 387 hr (~ 16 d)                                    | $1000 \text{ hr} (\sim 42$                                   | $1000 \text{ hr} (\sim 42$                           |
| Noise floor after $T_{int}$ ( $N\sigma_{\psi_0}$ or $N\sigma_{\beta_0}$ )                                           | ~ 0.8 nrad<br>(~ $10^3 \times N\psi_{0,QED}$ )     | 5.3 prad<br>(28%×Nψ <sub>0,QE</sub>                          | <b>1.1 prad</b><br>(3.3%×N $\psi_{0,QE}$             |
| QED effect in ellipticity $(N\psi_{0,QED} \propto NB^{2}I_{\lambda})$                                               | 0.72 prad                                          | 19.1 prad                                                    | 33.4 prad                                            |
| ALPs coupling scale ( $\mathbf{M} = \mathbf{g}_{\phi\gamma\gamma}^{-1} \sim -\mathbf{BL}/(4\sqrt{\sigma_{\alpha}})$ | 1.6×10 <sup>6</sup> GeV                            | 1.5×10 <sup>8</sup> GeV                                      | 2.6×10 <sup>8</sup> GeV                              |
| 31 The status and prospects of the Q & A experimentary with some applications                                       | nent                                               | ゴか                                                           | Hsien-Hao Mei                                        |


#### Q & A experiment in ALPs search



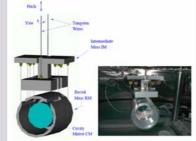



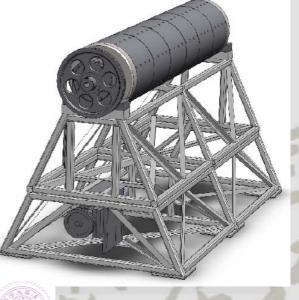

#### Summary & Outlook

- Q & A experiment searches for QED or (pseudo)scalar predictions through ellipsometer-measured birefringence and dichroism.
- Cavity mirrors are suspended for seismic noise isolation.
- Magnetic field shielding around cavity mirrors is improved.
- Sensitivity in polarization rotation and in ellipticity detection are both around 1  $\mu$ rad/Hz<sup>1/2</sup> with a 78% duty cycle within 48 days.
- A new magnet with B = 2.3 T and L = 1.8 m is already made for enhancing the physical effects. A copy will be added in the next stage.
- A 7 m FPI with  $F \sim 10^5$  cavity using 532 nm mirrors is under construction.
- We are currently aiming at 10 nrad/Hz<sup>1/2</sup> sensitivity.
- With these improvement and upgrading of vacuum, <u>QED</u>
   Birefringence would be <u>measured to 28 % in about 50 days</u>.









## Thank you very



The status and prospects of the Q & A experiment with some applications







