Search for monoenergetic solar axions with the CAST experiment

Krešimir Jakovčić (Rudjer Bošković Institute, Zagreb) for the CAST Collaboration

5th Patras Workshop on Axions, WIMPs and WISPs, 13-17 July 2009, Durham, UK

"Primakoff" solar axions

 produced by the Primakoff conversion of thermal photons in the solar plasma :

based on the axion-photon coupling :

$$L_{a\gamma} = -\frac{1}{4} g_{a\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma} \vec{E} \cdot \vec{B} a$$

• expected spectrum :
$$\frac{\mathrm{d}\Phi_{\mathrm{a}}}{\mathrm{d}E_{\mathrm{a}}} = 6.02 \times 10^{10} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{keV}^{-1} \left(\frac{\mathrm{g}_{\mathrm{a}\gamma}}{10^{-10} \mathrm{GeV}^{-1}}\right)^2 \left(\frac{E_{\mathrm{a}}}{\mathrm{keV}}\right)^{2.481} e^{-E_{\mathrm{a}}/1.205 \mathrm{keV}}$$

Axion emission from the nuclear deexcitation

additional production channel for solar axions

based on axion-nucleon coupling

$$L_{\rm aN} = i \ a \ \overline{\psi}_{\rm N} \gamma_5 (g_{\rm aN}^0 + g_{\rm aN}^3 \tau_3) \ \psi_{\rm N}$$

$$g_{aN}^{0} = -\frac{m_{N}}{f_{a}} \frac{1}{6} \left[2S + (3F - D) \frac{1 + z - 2w}{1 + z + w} \right]$$

$$g_{aN}^{3} = -\frac{m_{N}}{f_{a}}\frac{1}{2}(D+F)\frac{1-z}{1+z+w}$$

F = 0.462D = 0.808 matrix elements of the SU(3) octet axial vector currents

S = (-0.09 - 0.68) - flavor singlet axial vector matrix element

 $z = m_u / m_d = (0.3 - 0.6)$ $w = m_u / m_s \approx 0.028$

• an excited nucleus could deexcite via emission of an axion $(J^{\pi}_{axion} = 0^{-}, 1^{+}, 2^{-}, ...)$

→ axions could be emitted in magnetic nuclear transitions → monoenergetic axions $(E_a = E_{\text{transition}})$

excitation of nuclei in the Sun (kT ~ 1.3 keV) :

- thermal excitation : 57 Fe (14.4 keV) , 83 Kr (9.4 keV)
- nuclear reaction : $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li}^{*} (478 \text{ keV}) + v_{e}$

⁵⁷Fe as a solar axion emitter

⁵⁷Fe could be a suitable emitter of 14.4 keV solar axions:

- exceptionally abundant among heavy elements in the Sun (solar abundance by mass fraction 2.8×10⁻⁵)
- the first excitation energy is 14.4 keV not too high to be thermally excited in the Sun ($T_{Sun} \sim 1.3 \text{ keV}$)
- M1 transition between the first excited state and the ground state

 \rightarrow strong emission of 14.4 keV axions is expected from this nucleus

total ⁵⁷Fe solar axion flux expected at the Earth :

 $\Phi_{\rm a} = 4.56 \times 10^{23} (g_{\rm aN}^{\rm eff})^2 \ \rm cm^{-2} \ \rm s^{-1} \quad \rm where \quad g_{\rm aN}^{\rm eff} \equiv (-1.19g_{\rm aN}^0 + g_{\rm aN}^3)$

Detection of monoenergetic solar axions

Resonant absorption

Axions	Document ID	Target mass	Detector	Upper limit
⁵⁷ Fe	Krčmar et al., Phys. Lett. B 442 (1998) 38	31.5 mg	Si (Li)	m _a < 745 eV
	Derbin et al., JETP Lett. 85 (2007) 12	13.3 mg	Si (Li)	m _a < 360 eV
	Namba T., Phys. Lett. B 645 (2007) 398	197 mg	Si PIN	$m_a < 216 \text{ eV}$
	Derbin et al., arXiv:0906.0256 (2009)	263 mg	Si (Li)	m _a < 151 eV
⁸³ Kr	Krečak et al., Rad. Phys. Chem. 71 (2004) 793	193 mg	Prop.count.	$m_a < 5.5 \text{ keV}$
⁷ Li	Krčmar et al., Phys. Rev. D 64 (2001) 115016	56.7 g	HPGe	$m_a < 32 \text{ keV}$
	Derbin et al., JETP Lett. 81 (2005) 365	1.1 kg	HPGe	$m_a < 16 \text{ keV}$
	Belli et al., Nucl. Phys. A 806 (2008) 388	243 g	HPGe	m _a < 13.9 keV

axion-electron interaction

• axioelectric process : $a + e^- + Z \rightarrow e^- + Z$

• Compton conversion : $a + e^- \rightarrow e^- + \gamma$

⁵⁷ Fe axions	Kekez et al., Phys. Lett. B 599 (2004) 143	m _a < 400 eV
⁷ Li axions	G. Bellini et al. (Borexino Coll.), Eur. Phys. J. C 54 (2008) 61	$g_{ae}(g_{aN}^{0} + g_{aN}^{3}) < 1.0 \times 10^{-10}$ for m _a < 100 keV

axion helioscope method

Search for ⁵⁷Fe solar axions with CAST

[arXiv:0906.4488]

Phase I setup (vacuum inside magnet bores)

LHC test magnet (B=9 T, L=9.26 m)

Sun tracking time: 2×1.5 h per day

conversion probability :

$$P_{a \to \gamma} = \left(\frac{g_{a\gamma} BL}{2}\right)^2 \frac{4}{q^2 L^2} \sin^2\left(\frac{qL}{2}\right)$$

axion-photon momentum transfer

CAST TPC detector

Covering both magnet bores
Geometry: 30cm ×15cm ×10cm
Gas: Ar 95% + CH₄ 5%
Resolution @14.4 keV: 1.77 keV
Efficiency @14.4 keV : 13%

2819 effective hours of data-taking
tracking data : 203 hours
background data : 2616 hours

expected number of detected 14.4 keV photons :

 $N_{\rm s} = \Phi_{\rm a} P_{\rm a \to \gamma} S t \varepsilon_{\rm 14.4}$

Best fit value : N_s= - 42 ±27 counts
 → No signal for ⁵⁷Fe solar axions
 → 95% CL upper limit : N_s < 32 counts

Results :

$$g_{a\gamma}g_{aN}^{eff} < 1.36 \times 10^{-16} \text{ GeV}^{-1}$$

for m_a < 0.03 eV

Search for high-energy axions with CAST [arXiv:0904.2103]

1)
$$^{7}\text{Li}^{*} \rightarrow ^{7}\text{Li} + a (478 \text{ keV})$$

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li}^{*} + v_{e}$

$$\Phi_a^{\text{Li}} \simeq 10^{-15} \Phi_a^{\text{Fe}}$$

Calorimeter :

2) $p + d \rightarrow {}^{3}He + a (5.5 \text{ MeV})$

$$\Phi_a^{pd} \simeq 10^{-13} \Phi_a^{Fe}$$

Conclusions

The first implementation of the axion helioscope method to search for monoenergetic solar axions :

14.4 keV (⁵⁷Fe), 478 keV (⁷Li), and 5.5 MeV (p+d)

No axion signal was found

> Model-independent limits on $g_{a\gamma}$ and g_{aN} for $m_a < 0.03$ eV were set

Backup slides

• differential ⁵⁷Fe solar axion flux expected at the Earth :

 $\Phi_{a} = 4.56 \times 10^{23} (g_{aN}^{eff})^{2} \text{ cm}^{-2} \text{ s}^{-1} \text{ where } g_{aN}^{eff} \equiv (-1.19g_{aN}^{0} + g_{aN}^{3})$