LIPSS Searches with the JLab Free Electron Laser

O.K. Baker for the LIPSS Collaboration

5th Patras Workshop Durham, England 14-July-09

Light Shining Through a Wall'

■Sikivie (1983); Ansel'm (1985); Van Bibber et al (1987)

LIGHT BEAM experiment that would confirm the existence of axions passes a laser beam through a strong magnetic field, converting some photons to axions (green beam). The axions penetrate a wall before passing through another magnetic field that converts some of the particles back to photons, which form an extremely faint spot on the far wall.

photon regeneration 'light shining through a wall'

(1)

kinetic mixing
no magnetic field needed
hidden sector U(1) search

LIPSS recent highlights . . .

- just completed a new experimental run at JLab (June 29 – July 2).
 - pseudoscalar configuration (E 'dot' B)
- why?
 - complements scalar data from 2007 (E²-B²)
 - new FEL optics
 - motivation to run at 935 nm from Adler '08 paper
 - cusp effect at threshold leads to more sensitivity
 - checks for possible form factor dependence of coupling
- microwave cavity experiment in preparation
 - See P. Slocum's talk later in the conference

Jefferson Lab's Free Electron Laser

JLAB FEL spectroscopic range

JLAB FEL: regeneration experiment

OTS upgrades

- since Spring '07, improvements were made to stabilize the FEL OTS, as well as the LIPSS OTS.
 - shielding of optical components against stray light was installed in both the FEL optical cavity and in the collimator.
 - new LIPSS OTS mirrors, designed for 930nm operation were installed.
 - a new automated stabilization system for the LIPSS OTS.
- improved analysis software.

LIPSS – experiment schematic.

alignment procedure

- align with HeNe through the OTS and beam line to the CCD array
- align with HeNe from lab 1 to CCD array
- with FEL in alignment mode (<watt) align to CCD array
- same focus on CCD array in each case
- same position on TM's in each case
- button up LTB, increase FEL power

LIPSS experimental setup

LIPSS detector chamber

LN2 cooled:

<1 e/pix/hour dark noise !!!

5th Patras 2009

power delivered to the LIPSS beam dump in 2007

power delivered to the LIPSS beam dump in 2009

FEL tuned to 935 nm

parameters for latest LIPSS run (2009)

B-field: 1.77 T

magnet length: 1.01 m

■ IR FEL power >= 0.35 kW (avg)

IR FEL wavelength 935 nm (1.33 eV)

quantum efficiency 0.45

linear polarization 100%

acceptance 100%

experimental efficiency ~ 90%

increase S/N: focusing light

pixel array

in this run the beam illuminated a 3x3 (or smaller) array of 20 micron x 20 micron pixels

data taking . . .

5th Patras 2009

18

procedure...

- take short run at beginning
- take led run
- take data run
- translate detector
- repeat

led spectrum

Piacton 400BR-LN CCD camera

- good position resolution; no time resolution
- low dark current (cooled with LN₂)
- cosmic rays and background radiation induced events identified
- charge in each pixel converted to an ADU count

backgrounds

- thermal noise
 - < 1 count/hour/pixel at -120°C</p>
- read noise
 - □ 2.5 counts per read (every 1 hour in 2009)
- stray light
 - < 1 count/hour/pixel</p>
- cosmic rays in vacuuum pipe gas
 - □ negligible (~10⁻⁶ Torr vacuum)
- cosmic rays striking CCD array
 - easy to identify and discard
- radiation from FEL
 - negligible

_ . . .

two hour run characterize background

1354 2hour expsoure

thermal noise
stray light
read noise
all minimized

to remove "anomalies", a logical mask is created...

estimate σ based on 5-95% cut; then cut on $10 \times \sigma$

also mark off 1 pixel neighborhood

5th Patras 2009

23

data analysis . . .

two ways to determine background

- All CCD pixels not in the signal region
- CCD pixels in signal region with no FEL light
 - shutter closed/shutter open
 - electron beam on versus off
 - lights on versus lights off
 - temp dependence

extra U(1) gauge boson (paraphoton)

LIPSS results

arXiv:0810.4189 (submitted to PLB)

$$P = 16\chi^4 \left[\sin(\frac{\Delta k L_1}{2}) \sin(\frac{\Delta k L_2}{2}) \right]^2$$

χ coupling,⊿k momentum transfer,L propagation length

axion-like particle search

* PVLAS; now disclaimed

5th Patras 2009

LIPSS status

- just completed a new experimental run at Jefferson Lab during week June 29-July 2, 2009.
- laser light polarized parallel to magnetic field
- average ~350 watts; 935 nm
- data under analysis presently

most recent run – students and teachers

- Joe Amma Middle School teacher, Newport News, VA
- Jennifer Caldwell Univ of Ark, Pine Bluff
- Jonathan Evans South Carolina State Univ
- Taylor Robinson Heritage High School, Hampton, VA

LIPSS collaboration

A. Afanasev, R. Ramdon Hampton University

K. Beard[#], G. Biallas, J. Boyce, M. Shinn Jefferson Lab

O.K. Baker, M. Minarni ¹, P. Slocum, A. Martin Yale University

[!]now at Riau Univ, Indonesia [#]now at Muons Inc, Batavia funded mainly by the Office of Naval Research

5th Patras 2009

29

Backup slides

Native and laser induced defects impact a coatings' resistance to laser induced absorption

(courtesy W. Rudolph UNM)

PAST RESEARCH SUPPORTS THE EFFECT OF HARMONICS

- V. Sanders, J. Early, and W. Leamon, "The response of Multilayer Dielectric Coatings to Low Fluence Ultraviolet Light Exposure" Proc. SPIE <u>1438</u>, 561 (1989)
- Our IBS coatings have ~ 0.3 wt.% ZrO₂ in the HfO₂.

Figure 3. Comparison of high index materials in uv-damage experiment

32

33

threshold effect (Adler et al, hep/ph 0801.4739v4)

