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 Shining light through walls
* Resonant enhancement

» Design requirements

» Strawperson design

e Sensitivity
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Axion 2010, Gainesville, FL, Jan 15-17

e Goals;

— highlight recent experimental and
theoretical work in all areas of axion
physics

— have a low-key celebration of Pierre
Sikivie's sixtieth birthday.

 Friday January 15 and Saturday
January 16

— The main days for presentations,

e Sunday January 17
Born: 29 October 1949 — Sint-Truiden

— Discussions and perhaps some
special activities. s

Prof. Pierre Sikivie, University of Florida
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Shining light through the wall
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Laser
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BFT, BMV, GammeV limits. LIPPS, OSQAR similar
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An application of the effect has been proposed

PHYSICAL REVIEW D 76, 111701(R) (2007)

Long distance signaling using axionlike particles

Daniel D. Stancil®

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
(Received 4 April 2007; published 12 December 2007)

The existing experiments have all reached sensitivities
within about a factor of 3-4 of each other, with limits on
Jay IN the range of 3 x 10" to 1 x10°
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Resonantly-Enhanced Photon Regeneration

Photon
Detectors

S i e
Magnet \ / Magnet

Matched Fabry-Perots

Basic concept — use Fabry-Perot optical cavities in production and regeneration magnet.

2

PResonant S a —
(v Y) 7

FF'DPSimpIe(y Lao y)

where F, F' are the finesses of the cavities

Hoogeveen and Ziegenhagen (1991); Sikivie, DT, and van Bibber (2007), Mueller et al (2009) i
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Karl van Bibber’'s “EE” argument

The gain on the production

side is simple: B, Wall
« The number of forward = e I
passes the light makes in the

magnet is larger by a factor of
Fim

 Or, the cavity gain in power is
F/mt

10

* The axion flux is larger by a Magnet \
factor of F/mt
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Karl van Bibber’'s “EE” argument

* On the regeneration side, 1 pass
through the magnet produces:

Detector

* In the cavity, the light approaching a
mirroris e
PC B EC2 Magnet
» After 1 round trip this partial ray has 2
intensity —_— L —
I:)rt = R Ec2

 This adds in phase to the regenerated
wave E, (add amplitudes!)

E.=R'E_+E,

(1' R)* Ec = El

E.=E/T I
P_=P,/T?

This light is transmitted through the
mirror to the detector

P = P/T ~ F*P,/mt

Durham — Jul2009




Requirements

e Laser must be “locked” to production cavity.

* Regeneration cavity must be locked to resonance of
production cavity without filling it with light at the laser
wavelength.

o Cavities must be aligned on mirror image modes (as if
iInner mirrors and wall were not present).

e Need sensitive readout of weak emission from
regeneration cavity.

Detectors

/\

Matched Fabry-Perots
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Strawman design

Magnets: 12 Tevatron dipoles

e 6 on each side of the wall

« 5T field

6 mlength each

e 48 mm diameter

* Bg*Liay =180 T-m

Cavity: curved-flat FP

e 45 m length; FSR =c/2L_,, ~ 3.3 MHz

e Mirror radii: 114 m (outer) and -4500 m
(inner); g = 0.59

o Gaussian beam radii (field): 5.5 mm
(outer); 4.3 mm (inner)

e 1 ppm clip at 30 mm diameter

e Finesse =3.1x10°; T =10 ppm;

A =1 ppm/mirror
o Stored power ~ 1 MW
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LIGO-style laser

Diode pumped Nd:YAG MOPA

6-8 Watt.

1064 nm (282 THz).

Stabilized by reference cavity.
Pre-mode cleaner for spatial mode.
 TEM,, single-frequency VCO.
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Length control

Photon
Detectors

N e
Magnet \ / Magnet

Matched Fabry-Perots

|O provides mode-matching of laser to cavity (telescope)

Modulation for “locking the cavity.”
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RF Pockels cell modulators




Locking the cavities
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* Pound-Drever-Hall locking

* Resonant regeneration experiment is complex:
* 2 length degrees of freedom + alignment
» Absolute position must be held to ~1013 m




Offset lock the regeneration cavity

Beamblock

Input
Mirror
Axion
Generation H——
Cavity

Input
Mirror

Use low power, 100 mW,
Laser 2

Offset locked to Laser 1
Offset frequency Q set

by the frequency of Osc. 2
Q = integer * FSR of the
cavities

Regeneration cavity is
PDH locked to Laser 2
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Readout scheme

 The axion field converts in the regeneration cavity to a
signal field Eg at Laser 1 frequency w,.

Eo = Egne™0te!? O = k.d
S SC . a

e Mix this with laser 2 (the LO) at a photodiode; the signal
IS proportional to the intensity

S = |Es|” = |Erol® 4+ 2EL0Eso cos (Qt + ¢)

| 2

o Write this in terms of the number of photons in each field
S = Nro + Srcos Qi + Sg sin Q¢

SI = 2\/5\&@5\"?5 COS C) SQ = 2\/5\’}@5\% sin C)
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Readout scheme I

 Noise is shot noise:
o1 = V2N = /2N = 09

« Phase is arbitrary and unknown, so add | and Q in
guadrature

Sy = \/5;? + 53 = 2y/NoNs. 0z = \/a%’ + 03 =2V Nio

e Shot-noise limited SNR is
Sy,

Oy

l.e, one photon at an SNR of 1.
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Other issues

 Can avoid zeros of sinc function in conversion rate by
alternating field directions.

« To go beyond L ~ 90 m would require first removing
sagitta and then using larger diameter magnets. Km
scales => 200 mm diameters.

e For high power in production cavity, thermal
management/thermal lenses become important.

e Avoid stray light.
e Mustrunin UHV.

o Dust elimination is critical; scatter from 100 particles of
10 p diameter already dominates the loss budget.

* Need vibration-free mirror suspensions. Possibly
suspended.

* Include quantum efficiency, photodetector dark
current.
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Sensitivity: g«

u | | | | _
106 [—  Photon regeneration /_i
108 _
H’I'\ — —
% : ““““‘r‘-
S [ _CAST&HBS e
2 R A -
(@) —
— Resonantly-enhanced =

10-12 ==  photon regeneration

1014

104 10-3
T myev)

Durham — Jul2009



The Resonant Regeneration Collaboration

FNAL:

Aaron Chou (Wilson Fellow, co-spokesperson GammeV),
William Wester (co-spokesperson GammeV),

Jason Steffen (Brinson Fellow)

Peter Mazur,

Ray Tomlin,
Al Baumbaugh

Naval Postgraduate School and Lawrence Livermore National Lab:
Karl van Bibber (Chief Scientist, co-spokesperson ADMX)

Univ. of Florida:
David Tanner (ADMX, LIGO)

Guido Muller (LIGO, Chair of LISA Interferometer working group)
Pierre Sikivie (ADMX, axion physics)

Univ. of Michigan:
Dick Gustafson (LIGO)
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Collaborations need names...

“This time we mow the axion down for good”

GammeV
Reconstituted &
Instrumented
Magnets

for

Resonantly
Enhanced
Photon
Regeneration
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Conclusions

« Resonant approach improves sensitivity to g,,, by a
factor of 300 or so.

e |t canreach 2 x 1011 GeV-in 90 days of live time.

« All the technology for such an experiment exists.

— TeV magnets.

— Laser, cavity, instrument control, and readout adopt technology
proven in LIGO and LISA.
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Axion 2010, Gainesville, FL, Jan 15-17

e Goals;

— highlight recent experimental and
theoretical work in all areas of axion
physics

— have a low-key celebration of Pierre
Sikivie's sixtieth birthday.

 Friday January 15 and Saturday
January 16

— The main days for presentations,

e Sunday January 17
Born: 29 October 1949 — Sint-Truiden

— Discussions and perhaps some
special activities. s

Prof. Pierre Sikivie, University of Florida
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THE END




Cavity parameters

Gaussian beams

Strawman parameters

ltems governing finesse _ _ _
E amplitude of intensity [W/m1

electric field [V/m]

ltems governing length

position x
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L.aser Beams and Resonators
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Manuscript received July 12, 1966,
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Abstract—This paper is a review of the theory -of laser beams and Hill, N. J.
resonators. It is meant to be tutorial in nature and useful in scope. No

attempt is made to be exhaustive in the treatment. Rather, emphasis is

placed on formulations and derivations which lead to basic understand-

ing and on results which bear practical significance.

Durham — Jul2009

Siegman
STANFORD UNIVERSITY

Lasers by A.E. Siegman is both a textbook and
general reference book on lasers, with an em-
phasis on basic laser principles and laser theory.
Itbrings together into a unified and carefully laid
outexposition all the fundamental and important
physical principles and properties of laser de-
vices, including both the atomic physics of laser
materials and the optical physics and practical
performance of laser devices. A unique feature
of this book is that it gives a complete, detailed,
and accurate treatment of laser physics, building
only on classical models, without requiring a
quantum mechanical background of the reader.
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Cavity mode

A gaussian beam is described in the pararial approximation (sinf = #) by

E(P, 2.]] — A wWo eik: e tan~1(z/2) eikaI.IER(:] e—pg_.-"‘b'..'zlil:l

w(z)
where wy is the beam waist dimension (a radius) and

Tws

A

Zn =

is the Rayleigh range. The beam is /2 bigger at 2 = 2, from the waist.

(5]

The beam has a “diameter” of 2w(z), with

Az )2
u,‘lz{z} — -U’_.‘S [1 + ( -2) ] — -H_:'g
Tw;

the beam “size,” and a curvature

Finally.

is the beam divergance angle.
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Intensities
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At the waist, 2 = 0, w = wy, R = o, and
E = Ap7/ud

The intensity ~ E?, so
[ = Ipe %"/u8

and the power enclosed by a circle of diameter [) is
P(D) =P, [1 _ EDE_fﬂwﬂ

with F, the total power of the beam.
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Cavities

Durham — Jul2009

How do we find the waist? Set up a cavity, with curved mirrors of radi /2y
and Ko and with a distance L between them. The resonant beam will have
radil of curvature of K; at each mirror, and a waist between them. For us.
with curve /flat, Ry = R and Ry = oc. Then,

g=1l-%

2o AL [ g
w- = —
“ T 1 —g

(= g1g2) 1s called the stability product. We have go = 1. Want 0 < |g| < 1.

and

a “BEAM CONTOUR )
|




Stability
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hemispherical
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concave=convex
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Cavity parameters (10 W in; 0.8 / 8 ppm loss)
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Configuration: TEV 6+6 TEV 6+6 TEV 8+8 TEV 8+8

High F Low JF High F Low JF

Parameter units
By L Tm 180 180 240 240
Magnet length It 36 36 48 48
Magnet bore diameter TILITE o ol ol o
Cavity length It a7 a7 449 449
Free spectral range MHz 4.06G 4.06 306 3.06
Carved mirror radins of enrvature I1L L] 90 120 1240
Cavity stability factor g 0.59 0.59 0.59 0.59
‘avity waist radins I J.87 J.87 447 447
1 ppm beam diameter at curved mirror  mm 26 .5 265 30.5 30 5
10 ppm beam diameter at enrved mirror mm 242 242 277 e
Finesse Jx 100 Fu 10° 3= 107 Fa 108
Transmittance of Hat mirvor P b7 100 b7 1()
Resonance bandwidih Hz 26 260 19 190
Length variation for BW i 6.8 G& 6.8 G4
Intensity at Hat mirror MW fem® 22 0.17 22 0.16
Stored power MW 1.0 0.1 1.0 0.1
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Cavity with F = 1500

Transmittance (power) of mode cleaner near the resonance. Left panel shows
transmittance as a function of frequency: right as a function of length.
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