

Status of Approximation 1985

"Any Light Particle Search" at DESY

A. Lindner for the ALPS Collaboration

Outline

- Achievements and
- Results up to spring 2008.
- Upgrades
- Outlook

The Physics Case for a Low Energy Frontier of Fundamental Physics

A White Paper

Steven Abel¹, Markus Ahlers², Ignatios Antoniadis⁸, Carsten van de Bruck⁴, Wilfried Buchmüller⁵, Joe Conlon⁶, Claudio Coriano Mark Goodsell⁸, Marco Guzzi⁷, Joerg Jaeckel¹, Valentin W. Khoze¹, Ralf Lehnert⁹, Alessandro Mirizzi¹⁰, Javier Redondo¹, Andreas Ringwald⁵, Guenter Sigl¹¹, Christoph Weniger⁵

¹ Centre for Particle Theory, Durham University, Durham DK1 3

²Rudolf Peierls Centre for Theoretical Physics, Univer

Deutsches Elektrorden, Notker

 $^7 Lecce$

THE Paris

⁹MIT or MPI

¹⁰MPI Munich

¹¹ Hamburg

Direct WISP Search

Weakly Interacting Sub-eV Particles

"Light shining through walls" (LSW) or "photon regeneration" experiments.

ALPS @ DESY in Hamburg

Axion-Like Particle Search @ DESY

A photon regeneration experiment

Axion-Like Particle Search @ DESY

- DESY
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), and Institute for Gravitational Physics, Leibniz University Hannover
- Laserzentrum Hannover

Leibniz Universität Hannover

Universität Hamburg

Any-Light-Particle-Search @ DESY

Axion-Like Particles, Hidden Photons, MiniCharged Particles

A photon regeneration experiment

Any-Light-Particle-Search @ DESY

A photon regeneration experiment

Any-Light-Particle-Search @ DESY

A photon regeneration experiment

Axion-Like Particle Search

A photon regeneration expe

A photon regeneration experiment

ALPS at Work

Steps of data taking:

- 1. Test alignment with open detector tube and fraction of laser light passing the mirror (10⁻⁴).
- 2. Demount detector and detector tube, close tube and reinstall all.
- 3. Take data
- 4. Demount detector and detector tube, open tube and reinstall all.
- 5. Test alignment like in step 1.

One Data Frame

One Data Frame

Paper submitted to NIM A

arXiv:0905.4159v1

DESY 09-058

Resonant laser power build-up in ALPS
– a "light-shining-through-walls" experiment –

Klaus Ehret^a, Maik Frede^b, Samvel Ghazaryan^a, Matthias Hildebrandt^b, Ernst-Axel Knabbe^a, Dietmar Kracht^b, Axel Lindner^a, Jenny List^a, Tobias Meier^c, Niels Meyer^a, Dieter Notz^a, Javier Redondo^a, Andreas Ringwald^a, Günter Wiedemann^d, Benno Willke^c

^aDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

^bLaser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany

^cMax-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute, and Institut für Gravitationsphysik, Leibniz Universität,

Hannover, Callinstraße 38, D-30167 Hannover, Germany

^dHamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany

- Overview on WISPs.
- Characterization of the resonant power built-up.
- Results from an exemplary data run.

The Optical Resonator

Challenge: 8.6 m long optical resonator in the "noisy" HERA dipole (workshops near by)

The Optical Resonator

Characteristics:

Free spectral range: 17.4 MHz

FWHM: 127±12 kHz

Power built-up:

 $\overline{PB}_{TEM00} = 55\pm3$

Missmodematching: $\approx 20\%$

All characteristics very well compatible with losses at the anti-reflective coated surfaces of the two windows of $(0.22\pm0.01)\%$ per pass.

The Optical Resonator

Characteristics:

Lock very robust, power enhancement of 44±2

from the 31 h long exemplary data run:

- 25 exposures of 1 h length selected;
 6 rejected due to cosmics and magnet quenches.
- Effective laser power: 34±4 W (0.8 W · 44)
- Field strength: B = 5.3 T

ALPS Sensitivity

Data analysis of 25 h run in November 2008:

1. Plot sum of ADUs of 5x5 pixels in signal region for all 1h exposures.

2. Compare mean of "signal" and dark frames.

Data analysis of 25 h run in November 2008: no evidence for WISP production ☺

Sensitivity reached (95% CL): flux(2.3eV γ) < 28 mHz

Polarization	Prob.× 10^{22}	95% C.L.	99% C.L.
Parallel	0.8 ± 4.4	9.4	12
Perpendicular	0.4 ± 2.2	4.5	5.8
Independent	0.3 ± 1.4	3.0	3.9

Remark:

laser polarization at 55° with respect to the B-field.

The angle is determined by the angle of incidence of the laser beam on the windows (placed inside the resonator!).

Laser Upgrade I

 Resonant Second Harmonic Generation (SHG) to increase conversion efficiency

since 18 Feb. 2009:
Simultaneous lock of both cavities works!

5 W @ 532nm from

14 W @ 1064 nm (instead of 0.8 from 34 W)

32

Laser Upgrade II

- Include mirrors of cavity in magnet into the vacuum
 - no windows necessary, much stronger power built-up expected.

Laser Upgrade II

- Include mirrors of cavity in magnet into the vacuum
 - no windows necessary, much stronger power built-up expected.

Detector Upgrade

Any-Light Particle Sea

Princeton Instruments PIXIS:1024B: better QE, lower dark current, smaller read-out noise + improved optics: increase in sensitivity by a factor of ≈ 10 .

A photon regeneration experiment

The new ALPS Camera

Liquid cooled PIXIS:1024B from Princeton Instruments

Problem concerning stability of pedestal and/or gain for exposure times larger than about 500 s (29!) found.

Reason still not identified by the Company (nor by us).

Parameterization recovers sensitivity, but clearly unsatisfying!

Testing the Camera

Test with strongly attenuated laser beam: $\approx 45 \, \gamma$ per frame

The widths of both distributions agree nicely, but the mean value in the data frames is shifted to higher values showing an excess of 41.1±3.6 ADU (would be 11 mHz in 1h frames).

ALPS Prospects

- PIXIS:1024B instead of SBIG ST-402: increase flux sensitivity by a factor of ≈ 10.
- Upgrade to a resonant SHG (1064 to 532 nm): increase 532 nm laser power by a factor of ≈ 6.
- Upgrade optical resonator: include mirrors into the vacuum to get rid of the windows.
 Increase power built-up by a by factor of ≈ 5 (currently coping with power densities on mirror surfaces under vacuum conditions).

Increase sensitivity in g(ALPs) by $(10.6.5)^{1/4} = 4$

Extending the Mass Range

Combine measurements with different vacuum tube lengths

to "beat" the form-factor:

$$F(q\ell) = \left[\frac{\sin\left(\frac{1}{2}q\ell\right)}{\frac{1}{2}q\ell}\right]^2$$

Outlook

- For the first time an optical resonator was successful operated in a LSW experiment.
- A clear path towards significant improvements in sensitivity has been opened.
- We aim for finishing ALPS in October 2009. (the cryogenics at DESY will be shut down for refurbishment and upgrades).
- It's fun to probe new territory!

Leibniz Universität Hannover

