- B. Morgan, A.M. Green and N.J.C. Spooner, Phys Rev D71 (2005) 103507
- P. K. Lightfoot, N. J. C. Spooner et al., Astropart. Phys. 27 (2007) 490
- S. Burgos et al., Astropart. Phys. 28 (2007) 409
- N.J.C. Spooner, J. Phys. Soc. Japan, 76 (2007) 11101
- E. Tziaferi et al., Astropart. Phys. 27 (2007) 326
- K. Pushkin et al., (2008) arXiv:0811.4194
- S. Burgos et al., Nucl. Instrum. and Meth. in Phys. Res. A 584 (2008) 114
- S. Burgos et al., JINST 4 (2009) P04014
- S. Burgos et al., Nucl. Instrum. and Meth. in Phys. Res. A600 (2009) 417
- S. Burgos et al., Astroparticle Physics 31 (2009) 261
- P. Majewski, D. Muna, D.P. Snowden-Ifft, N.J.C. Spooner (2009) arXiv:0902.4430

PI - D.P. Snowden-Ifft

PIs - N.J.C. Spooner and E. Daw

PI - A.S. Murphy

PI-D. Santos

DRIFT

Progress with DRIFT CYGNUS Cooperation

- •old stuff
- new stuff

Neil Spooner

Dark Matter Signals

- Motion of the Earth through a static WIMP 'halo' -> Earth is subject to a 'wind' of WIMPs
- of average speed ~220kms⁻¹ coming roughly from the direction of the constellation Cygnus.
- The Earths rotation relative to the WIMP wind -> Direction changes by ~90° every 12 hours

How Many People Needed? CYGNUS Cooperation links most groups

- Interest in directional detection rapidly increasing
- DRIFT (US-UK), MIMAC (France), (CAST), NEWAGE (Japan), DMTPC (US), Emulsions (Japan)
- Theory groups.... CYGNUS2007 meeting 22-24 July 2007, Boulby, UK

CYGNUS2009 11-13 June 2009, Boston, USA

CYGNUS2010, Grenoble, France Cooperation on joint document towards scale-up

Directional Dependence v. Ann Mod

Directional signal

Annual modulation signal

Hard for a background to mimic the directional signal. (anisotropic backgrounds in lab are isotropic in Galactic rest-frame)

A WIMP directional signal could *(in principle)* be detected with of order 10 events [Copi, Heo & Krauss; Copi & Krauss; Lehner & Spooner et al.]

Towards WIMP Astronomy

How Many WIMPs Needed?

Dependence of number of events to reject isotropy (*and detect a WIMP signal*) at 90 (95)% c.l. in 90 (95)% of experiments, N_{90} (N_{95}), on detector capabilities:

difference from baseline configuration	N_{90}	N_{95}
none	7	11
$E_{\rm T}=0~{\rm keV}$	13	21
no recoil reconstruction uncertainty	5	9
$E_{\rm T} = 50~{\rm keV}$	5	7
$E_{\rm T} = 100~{\rm keV}$	3	5
S/N = 10	8	14
S/N = 1	17	27
S/N = 0.1	99	170
3-d axial read-out	81	130
2-d vector read-out in optimal plane, raw angles	18	26
2-d axial read-out in optimal plane, raw angles	1100	1600
2-d vector read-out in optimal plane, reduced angles	12	18
2-d axial read-out in optimal plane, reduced angles	190	270

· upgraded and unrealistic

Green & Morgan 'PRD '08, arXiv:0711.2234 Green & Morgan, Astropart. Phys '07, astro-ph/0609115 Morgan & Green, PRD '06 ,astro-ph/0508134 Morgan, Green & Spooner, PRD '05, astro-ph/0408047

> assuming perfect angular resolution

baseline configuration: 3-d vector read-out, 20 keV threshold, zero background, recoil reconstruction uncertainty taken into account

What Threshold Needed?

Exposure requires as a function of threshold energy to reach 10⁻⁷ pb:

anisotropy increases so number of events required decreases, but event rate also decreases. Net effect: exposure increases.

Range Discrimination

simulations

Key points: it's range discrimination - no doubt >10⁶ gamma rejection shown in DRIFT II S. Burgos et al., Astropart. Phys. 28 (2007) 409

NI-TCP (negative ion time projection)

- NI-TPC uses electronegative CS_2 atoms to transport electrons to the MWPC readout plane with only thermal diffusion
- At the high field region near the MWPC the electrons are stripped from the negative ion and avalanche in the normal fashion
- Standard TPC electrons at ~1000ms⁻¹
- NI TPC ions at ~50ms⁻¹
- High spatial resolution

DRIFT IIa-d at Boulby mine

- 1 m³ active volume back to back MWPCs
- Gas fill 40 Torr $CS_2 => 167$ g of target gas
- 2 mm pitch anode wires left and right
- Grid wires read out for Δy measurement
- Veto regions around outside
- Central cathode made from 20 μm diameter wires at 2 mm pitch
- Drift field 624 V/cm
- Modular design for modest scale-up

3D Track Reconstruction

Example 3D reconstruction (x-z and y-z projections) of a ~100 keV S recoil in DRIFT IIb (size of circles is indicative of the size of charge deposited).

D. Muna Thesis, University of Sheffield (2008)

Boulby mine

- Current site (1.1 km deep) hosts dark matter experiments in salt rock
- But new excavation underway to deeper levels, hard dolomite rock
- Suitable for a large TPC!

Recent DRIFT Progress

Recent papers from the DRIFT collaboration demonstrate:

- 3-dimensional directionality <u>http://arxiv.org/abs/0807.3969</u>
 - ^o ²⁵²Cf source produces S recoils similar to expected WIMP induced recoils
 - Demonstrated for the first time directional sensitivity to nuclear recoils in a large dark matter detector
- Head-tail discrimination <u>http://arxiv.org/abs/0809.1831v1</u>
 - Demonstrated that neutron induced sulfur recoils in the DRIFT detector have a clear asymmetry.
 - Head-tail discrimination reduces no. of WIMP events required by an order of magnitude.
- Sensitivity to low energy events -<u>http://arxiv.org/abs/0903.0326v2</u>
 - Demonstrates the sensitivity of the DRIFT detector to detect sulfur recoils down to ~3keV
- Low back stoy not filtering
 - Solutions to radon RPR reduction
 - Latest background ~1 event per week

(1) Low Energy Result S. Burgos et al., Astroparticle Physics 31 (2009) 261

use of Savitzky-Golay digital filter

⁵⁵Fe track reconstruction and digital polynomial smoothing - data fit to exponential decay(noise) plus Gaussians

Energy thresholds -->

Note these are not the trigger thresholds yet

Source of Track	Thres. Energy (keV)
Electron	1.23
Alpha	1.23
Carbon nuclear	recoil 2.15
Sulphur nuclear	recoil 3.46

(2) Head-Tail Result

Experiment: S. Burgos et al., Astroparticle Physics 31 (2009) 261 Theorem P. Majowski, D. Murg, D. P. Snowdon, 1664

<u>Theory</u>: P. Majewski, <u>D. Muna</u>, D.P. Sn<u>owden-Ifft</u>, <u>N.J.C</u>. Spooner (2009) ar<u>Xiv:0902.4430</u>

Cf-252 Directed neutron runs (DRIFT IIc): +z, -z,+x, -y

(3) Radon Progeny Result S. Burgos et al., Astropart. Phys. 28 (2007) 409 First low background runs of DRIFT-II see a recoil-like background ~200-600 / day (50-250 keV).

Increase with time consistent with Rn emanation.

Hypothesis: Recoil of radon progeny on central cathode - with alpha absorbed in wire.

20 µm

DRIFT II sees an excess of background events attributed to recoils of ²¹⁰Pb plated out on the detector. Likely region for build-up of ²¹⁰Pb is on the cathode wires.

Now applied same cleaning procedure to the MWPC grid and anode wires.

RPR Reduction Results

Run	Detector	Gas flow rate	GPCC rate	RPR rate
	configuration	(chg/day)	(m-3day-1)	(day-1)
(1) DIIa June 2005	Original state	1	8000+/-1000	500+/-20
(2) DIIb Feb 2007	RG58, teflon cables removed and inner detector sealed	1	820+/-40	40+/-2
(3) DIIb July 2007	As above	10	110+/-30	51+/-4
(4) DIIb Feb 2008	As (2) (with slight cuts change)	1	-	55+/-8
(5) DIIb Mar 2008	As (4) but cathode nitric cleaned	1	-	3.4+/-2
(6) DIIb Aug 2008	After MWPC nitric clean	1	-	<1/week
(7) DIIb Mar 2009	After MWPC nitric clean	1	-	<1/week

- Big success in background reduction >x3000
- New work underway on fiducialisation and further passive reduction

Next - Spin Dependent Gas Mixtures

- DRIFT detector could be converted to a competitive spin dependent dark matter detector with the addition of CF_4
 - Dark matter signal contains both scalar and axial (spin independent, SI, and spin dependent SD) components
 - CF₄ is an attractive candidate
 - Can it work in DRIFT?
 - Can it work with CS₂ negative ion gas carrier but still preserve the low diffusion use of CS₂?
 - An ideal gas because

Non toxic, non flammable (unlike CS_2) ¹⁹F has odd proton Natural abundance of 100% ¹⁹F ¹⁹F has the best known spin figure of merit

CS₂-CF₄ Gas Mixture Tests

- The collaboration has explored various CS₂-CF₄ mixtures
- Sheffield studied sensitivity, Grenoble is studying quench factors

Gas mixture tests - W value

Ionisation yield for a single electron, Y_{SE}

Size of event p

Expose to 55Fe

eld for a s	ingle elect	v ($\left \Sigma_{55} \right\rangle_{\mathbf{V}} \left \left\langle \Sigma_{55} \right\rangle \right\rangle$	
produced	$, <\sum_{SE} >$		$Y_{55} = \frac{1}{\sqrt{2}}$	$\frac{1}{\Sigma_{SE}} \hat{\boldsymbol{Y}}_{SE} = \frac{1}{\langle \boldsymbol{\Sigma}_{SE} \rangle}$
e x-rays t	o measure	e size of event <	$\sum_{55} >$	$W = \frac{E_{55}}{V}$
Voltage, V	Ionization	W-value, eV	W-value, eV	Y ₅₅

 $W = \frac{E_{55}}{Y_{55}}$ Gases, (Torr) Pure CS₂ yield (other works) Pure CS₂, (40) 1600 237 ± 7 24.9 ± 0.8 24.7±0.7[18] 26.0±0.5 [19] CS₂-CF₄, (30-10) 1550 234 ± 6 25.2 ± 0.6 CS2-CF4, (20-20) 1350 202 ± 7 29.2 ± 1.0 Preliminary CS₂-CF₄, (10-30) 1300 179 ± 5 33.0 ± 1.0 23.7 ± 0.8 CS₂-He, (35-5) 1550 249 ± 8 253 ± 8 23.1 ± 0.8 CS₂-Ne, (35-5) 1550

with thanks to Dan Snowden-Ifft

CS_2 - CF_4 Gas Mobility measure the drift time, using the laser

start signal, and hence mobility:

$$v = \frac{\mu E}{p}$$
 $\mu = \frac{p \ln(\frac{b}{a})}{2\Delta t \Delta V} (b^2 - a^2)$

Gases, Torr	Voltage, V	Drift time,	Reduced	Reduced	
		μs	$\mu cm^2 atm$	$\mu cm^2 atm$	300
			Vs	Vs	0
				(other works	S.
					~
Pure CS ₂ , (40)	1600	270.8±0.2	0.54 ± 0.02	0.52 ± 0.02	onut
				[5]	
CC CE (20.10)	1.5.5.0	250 1 0 2	0.00.000		- 9 -
CS_2 -CF ₄ , (30-10)	1550	250.1±0.2	0.60 ± 0.02		10 - I
CS2-CE4 (20-20)	1350	251.0+0.3	0.69+0.02		
0.02 014, (20 20)	1000	201102010	0.0720.02		
CS ₂ -CF ₄ , (10-30)	1300	222.0±0.3	0.81±0.03		0 50 100 150 200 250 300 350
				Les 1	Drift time (µS)
CS ₂ -Ar, (35-5)	1550	257.4±0.2	0.59 ± 0.02	jnal.	CONCLUSION:
CS ₂ -He, (35-5)	1550	252.0±0.3	0.60 ± 0.02		negative ion
CS ₂ -Ne, (35-5)	1550	248.2±0.3	0.61 ± 0.02		works with F

Gas Mixture Tests - Gain

From the known gain of the amplifier chain and the size of events gives us the gain for a single electron

- All mixtures total 40 Torr
 - Gas gain increases for added CF₄
 - Stability decreases
 - High gas gains even with 75% CF₄
 - Best stability with 50:50 mix or lower CF4
- mix or lower CF4
 Need to run at lower voltages for stability of high voltage systems – lose MWPC gain
- Loss in MWPC gain is compensated for by improved gas gain.

with thanks to Dan Snowden-Ifft

Gas Mixing Installed - DRIFT IId

- Built a fully automated gas mixing system to supply a <u>continuous flow</u> of pre-mixed CS₂-CF₄ gas mixture to the vacuum vessel
- Designed by Oxy-Sheffield
- System of mass flow controllers and capacitance manometers to accurately control and monitor gas
- Fully automated and integrated into the current DRIFT slow control
- Installed at Boulby in May 2009
- Installed and working in 2 days
- Now taking CF₄ data

CS₂-CF₄ Gains in 1 m³ Detector

- DRIFT detector concept works well with up to 75% CF₄
- Gas gain increases
- High voltage stability decreases
- MWPC voltages were chosen such that ⁵⁵Fe ionisation yield x gas gain is constant in each mixture
- Allows direct comparison of gas mixtures

Mixture Gain Curves New Electronic Settings

F Recoil Range and Rate Tests pre-Boulby tests using ²⁵²Cf

Expect n-event rate to increase with more CF4 (gains adjusted, same cuts) Expect F recoils to be longer than S recoils

SD Sensitivity of DRIFT IId

- Plan is to run for 2.4 m³-years of exposure (started)
- Simulations are in progress understand the expected behavior in the mixed gas

Expected WIMP-proton spin dependent sensitivity

Ultimate limit for a non-directional detector is neutrinos (> tonne scale)

Scale-up Speculation (ultimate for SI) 1 tonne directional target:

- Charge readout option $\sim 10^6$ channels (with grouping)
- CCD concept ~ 10,000 CCD cameras and optics
- SuperK size cavern device:
 - 10 tonnes (40 Torr)
 - 50 tonnes max
- Ultimate on scale of proton decay caverns:
 - 400 2000 tonne directional target mass
- Excavation not a cost driver: €20-50/m³, €250K/tonne target
- Cost extrapolation from DRIFT IId: €50K/m³

 \Rightarrow ~€100M/tonne (with scale factors)

Conclusions

- Big progress in the last two years (published)
 Event by event discrimination
- ^D Directional signals possible at 1 m³ scale
- Head-tail (sense) exists and is understood at 1 m³ scale
- Low recoil thresholds feasible (e.g. 2 keV S-recoil) at 1 m³ scale
- Negative ion (low diffusion) operation with other targets
 More international activity r Fluorine (CS₂-CF₄)
 - DM-TPC
 NEWAGE
 MIMAC, CAST
 Provident Fluorine (CS₂-CF₄)
 CYGNUS cooperation and conference series on directional dark matter
 Successful and expanding
- Two scale-up design studies underway

DRIFT (US-UK) - CYGNUS (UK-France-Germany-Spain) NSF bid
ASPERA bid