

Henrique Araújo

Imperial College London & Rutherford Appleton Laboratory, UK

On behalf of the ZEPLIN-III Collaboration:

Edinburgh University (UK), Imperial College London (UK), ITEP-Moscow (Russia), LIP-Coimbra (Portugal)

STFC Rutherford Appleton Laboratory (UK)

5th Patras Workshop, 13-17 July 2009, University of Durham, UK

ZEPLIN-III Operation Principle

Readout of <u>scintillation light</u> and <u>ionisation charge</u> with array of 31 photomultipliers

ZEPLIN III: High-Field, 2-Phase Xenon

- Good light collection for scintillation
 - Photomultipliers immersed in the liquid
 - Slab geometry (35 mm drift height, D/h~10)
- Better discrimination
 - 'Open plan' target, no extraction grids
 - High field operation (4 kV/cm)
 - Precision 3D position reconstruction
- Low background construction
 - Copper construction, low background Xe

Single Electron Sensitivity in S2!

Sensitivity:

Quantum of ionisation measured in >kg LXe targets!

Calibration:

S2 electron yield calibrates absolute ionisation yields, electroluminescence, trigger thresholds

Edwards et al., Astroparticle Phys. 30 (2008) 54

ZEPLIN III: Entrails

Boulby Underground Laboratory

We're all in the gutter, but some of us are looking underground...

Shielding: completed mid Feb 2008

- Shielding against rock radioactivity
- o 30 cm hydrocarbon, 20 cm boxed lead
- o 10⁵ attenuation for both neutrons and gamma-rays

First Science Run – parameters

- Transport from lab at IC and recommissioning u/g during 2007
 - Commissioning stage completed mid-Feb 2008
 - All systems ready: gas handling, cooling, shielding, external levelling, DAQ, slow control, calibration delivery, data pipeline, ...
- Required electron lifetime achieved (>20 us)
 - Purification in gas phase through external getters
 - No degradation once in target (construction with xenon-friendly materials)
- Operational parameters defined
 - 4 kV/cm in LXe, 8 kV/cm in GXe (17 kV between electrodes)
 - 4 mm gas gap, 1.6 bar operating pressure
 - S1 light yield 1.8 phe/keV @4 kV/cm (5.0 phe/keV @0 kV/cm)
 - S2 light yield ~20 phe/electron @4 kV/cm
- Very stable operation for nearly 5 months!
 - LN2 consumption: <20 litres/day as per thermal design
 - Stable pressure (temperature) throughout
 - Occasional (Poissonian) trips of PMT power supply
 - No anode/cathode trips during entire science run (many months)!

Free electron lifetime in liquid xenon

- First purification achieved ~20 us at high field (no degradation in target)
- o (note that there is strong field dependence: low-field value > 100 us!)
- This increased slowly during the run with NO external recirculation!

First Science Run – datasets

- Early calibrations (Am-Be, Cs-137, Co-57, Co-60, ...)
 - Confirm performance, optimise operation parameters
 - First Science Run (shielded) begins 27 Feb 2008
 - Daily calibration with Co-57 gamma-rays
 - S1 & S2 stability, electron lifetime, levelling
- Daily data dip-test (10%)
 - Quality monitoring, electron-recoil background, analysis tuning
- Science Run ends 20 May 2008
 - 83 days at 84% duty cycle, 27 TB raw "dark" data
 - 850 kg*days raw exposure (12 kg LXe)
 - 450 kg*days fiducial exposure (6.6 kg LXe)
 - 128 kg*days efficiency-corrected exposure in WIMP-acceptance region
- Final calibration runs
 - Extended neutron (Am-Be) calibration (5 hours)
 - Extended gamma (Cs-137) calibration (122 hours, volume ~ dark data)
 - Engineering & Physics runs (a couple of weeks)

Data Processing

Pulse finding and event display: ZE3RA (ZEplin 3 Reduction & Analysis)

Co-57 daily calibration

- o Calibration is well understood including low-rate, low-energy Compton feature
- Excellent energy resolution by exploiting S1-S2 anti-correlation (σ =5.4% @122keV)

Low-energy gamma background

10 DRU – excellent agreement with MC prediction for PMT array

Nuclear recoil calibration (Am-Be neutrons)

2-20 keVee NR x-y distribution biased towards source location

WIMP BOX: 2-16 keVee μ -2 σ , μ

SI S2 S2 -150 -4 -3 -2 -1 0 1 2 3 4 time, µs

5 keVee NR from neutron elastic scatter

5th Patras WS 2009

Henrique Araújo

Electron recoil calibration (Cs-137 gammas)

14 bins in 2-16 keVee fitted with Skew-Gaussian functions:

$$G(x|A, x_c, w, \alpha) = \frac{A\sqrt{2}}{w\pi} e^{-\frac{(x-x_c)^2}{2w}} \int_{-\infty}^{\alpha \frac{x-x_c}{w}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

S2/S1 calibration (data and AmBe)

Prediction for ER leakage into WIMP acceptance box: 11.6±3.0 events

S1 response: E_{ee} to E_{nr} conversion

WIMP acceptance box: 2-16 keVee → ~10-30 keVnr

Looking for detection inefficiency

- Monte Carlo (GEANT4) systematics?
 - Correct implementation of ENDF-VI –VII
 - Resilient to most experimental parameters
 - Confirmed with independent MC FAUST
 - Software cut efficiencies?
 - No significant effect at 10 keVee
 - Effect persists in uncut data
- Data reduction problem?
 - Visually scanned hundreds/thousands of events
 - Verified pulse parameterisations 'by hand'
- Non-linear S1 response?
 - Very linear system over relevant response range
 - Confirmed by statistics-based calibration method
- Trigger inefficiency?
 - Software simulations confirm trigger function
 - Hardware tests (pulser) confirm trigger function
 - Lower-threshold AmBe dataset (effect <4 keVee)
- ✓ Varying scintillation yield?
 - Leff and/or Sn must vary with recoil energy!

F. Neves et al, arXiv:0905.2523

$$E_{nr} = \frac{S1}{L_y} \underbrace{\frac{S_e}{L_{eff} S_n}}$$

Science Data – 7 events in WIMP box

Maximum likelihood analysis with 1 nuisance parameter: varying width of ER Skew-Gaussian within errors

Global likelihood maximum: S=0, B=7 events 90% CL: 2.9 evts for 60 GeV WIMP ($\sigma_{W-n}=7.7x10^{-8}$ pb)

5th Patras WS 2009

Henrique Araújo

FSR Result – SI cross-section

Lebedenko et al, arXiv:0812.1150

FSR Result – SD W-n cross-section

Lebedenko et al, arXiv:0901.4348

Phase II – Integration with Veto

- An important tool for both <u>neutron rejection</u> as well as <u>diagnostics!</u>
- Inner Gd-loaded hydrocarbon surrounded by plastic scintillator veto
- Delayed coincidence detection of capture gammas from Gd and H 0
- Final stages of commissioning integration with ZEPLIN-III coming soon

Phase II – PMT Upgrade

- Existing PMTs limited sensitivity of first run (gammas-rays at least)
- o Custom design for ultra low-background tubes, pin-by-pin compatible
- o Factor ~30 improvement in gamma-ray activity expected

Summary

- Demonstrated long-term operation of two-phase xenon detector
- Achieved stable operation at high electric field (4 kV/cm)
- Stable (and improving!) electron lifetime with no recirculation
- Excellent electron/nuclear recoil discrimination (better than 1:5,000)
- Gamma background (PMT dominated) is well understood
- World-level SI and SD results (SI $\sigma_{W-n} = 7.7 \times 10^{-8} \text{ pb}$)
- Second science run to begin soon with upgraded instrument
- \circ Tenfold sensitivity improvement within reach (SI σ_{W-n} < 1x10⁻⁸ pb)

In Memoriam **Vadim Nikolaevitch Lebedenko 1939 – 2008**

LUX-ZEPLIN – tonne-scale targets

- Still a long way to go to exclude full SUSY parameter space!
- US LUX team and European ZEPLIN team have joined forces
- o LZ3 3-tonne xenon at SUSEL + LZ20 20-tonne xenon at DUSEL

