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Cryogenic Techniques
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Combination of phonon measurement with 
measurement of ionization or scintillation

Phonon: most precise 
total energy measurement

Ionization / Scintillation:
yield depends on recoiling 
particle

Nuclear / electron recoil 
discrimination.



Detectors used in CRESST
heat bath
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Particle interaction in absorber 
creates a temperature rise in 
thermometer which is proportional 
to energy deposit in absorber

Signal pulse (~6keV)
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Width of transition: ~1mK
Signals: few µ K
Stablity: ~ µ K



W-SPTSilicon
absorber

CaWO4

absorber
300g

W-SPT

reflecting 
cavity

140

120

100

80

60

40

20

0

Pulse Height in Phonon Detector [keV]
0     20    40     60    80    100   120   140

Pu
ls
e
 H
e
ig
h
t 
in
 L
ig
h
t 
D
e
te
ct
or
 [
k
e
V
e
e]

n

γγγγ and ββββ

QF QF γ, βγ, β = 1= 1

QF QF αα= 1/5= 1/5

QF QF OO--recoilsrecoils= 1/9= 1/9

QF QF WW--recoilsrecoils= 1/40= 1/40

Phonon – Scintillation (CRESST)

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) 
by simultaneous measurement of phonons and scintillation light



CRESST – Detector Module

CaWO4:  h = 40mm, ∅ = 40mm

m = 300g



CRESST in Gran Sasso



66-channel SQUID Readout System

Electronics allows full 
remote control of detector 
operation � optimization of 
detector running parameters 
reduced threshold

Specially made cryo-cables



Detector Capability
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57Co calibration:

Example of a 
Background 
Spectrum:

Resolution at low 
energy ~ 300 eV
(FWHM)

Threshold ~ 1 keV



Two modules running
Total exposure 48 kg.days
Very stable operation possible

β/γ background rejection works very well
3 tungsten recoil candidates in 10 – 40 keV acceptance region

Results from extended commissioning run (2007)



210Po

206Pb α

Possible Causes for Nuclear Recoil Candidates

1. Neutrons
Shielding improved

2. Recoil nuclei from surface α-decay
can be vetoed with scintillating foil, 
however, weak point: clamps, 
holding crystal  were not 
completely covered with scintillator

Strategies for 2008 run:

Cover clamps with scintillating epoxy.

Implement new technique with glued 
thermometers for improved scintillation 
yield.
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9 modules operated; but saw varying number of no-light events

Properties of no-light events:
Many (not all) show different pulse shape
Rate decreases with time
Lower rate with pure metal clamps
� Detector effect: too hard clamping (cracks, 
particle-like pulses), stress relaxation (in 
scintillating plastic, longer pulses)

Background Run: Aug – Dec 2008



• All crystals equipped with new clamps
– thinner material � softer
– material: only bronze, no plastic coverage
– non-scintillating: need for even higher cleanliness during 

detector production and mounting to avoid nuclear recoil 
background

• New run successfully started in June 2009
– 9 detector modules operational
– Cryostat still cooling, more modules may come into transition
– Calibration run has been performed
– Background run ongoing
– Situation with no-light events unclear (need more exposure)

Measures taken and Status 2009



Scintillating Targets for Rare Event Searches

CaWO4 – (primary CRESST material): good first choice

ZnWO4 – (additional target): attraction: lower intrinsic 
radioactivity, potentially higher light yield 

CaMoO4– complementary target with ‘better’ quenching 
factor for nuclear recoils 

Al2O3-Ti – bolometer in EDELWEISS setup
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Comparison of light yields
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Light Yield of a few targets is already satisfactory, 
further improvement possible (doping, tuning of 

growth condition, post-treatment)
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EURECA in LSM

Timeline:

2009/10: Design Study � TDR

2011/12: Digging out of LSM 
extension begins. In parallel, 
begin construction of EURECA 
components away from LSM. 
Aim for ~100kg stage (10−9 pb).

2014: LSM extension ready to 
receive EURECA.

2015: Begin data taking and in 
parallel improve and upgrade.

2018: One tonne target 
installed.

Existing laboratory

New LSM 
extension

Possible EURECA Facility Layout



~1 evt/kg/day

~3 evt/kg/year

~30 evt/ton/year

Science Results and Aims

Aim of ton-scale 
experiments


