Searching for Dark Matter with CRESST (EURECA)

H Kraus
University of Oxford

Cryogenic Phonon – Scintillation Detectors

The CRESST setup in Gran Sasso

CRESST – recent results

Migration towards EURECA

Cryogenic Techniques

Combination of phonon measurement with measurement of ionization or scintillation

Phonon: most precise total energy measurement

Ionization / Scintillation: yield depends on recoiling particle

Nuclear / electron recoil discrimination.

Detectors used in CRESST

Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposit in absorber

Signal pulse (~6keV)

Width of transition: ~1mK

Signals: few μ K

Stablity: ~ μ K

Phonon – Scintillation (CRESST)

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

CRESST – Detector Module

CaWO₄: h = 40mm, $\emptyset = 40mm$ m = 300g

CRESST in Gran Sasso

66-channel SQUID Readout System

Specially made cryo-cables

Electronics allows full remote control of detector operation → optimization of detector running parameters reduced threshold

Detector Capability

Example of a ⁵⁷Co calibration:

Example of a Background Spectrum:

Resolution at low energy ~ 300 eV (FWHM)

Threshold ~ 1 keV

Results from extended commissioning run (2007)

Two modules running
Total exposure 48 kg.days
Very stable operation possible

β/γ background rejection works very well 3 tungsten recoil candidates in 10 – 40 keV acceptance region

Possible Causes for Nuclear Recoil Candidates

- Neutrons
 Shielding improved
- 2. Recoil nuclei from surface α-decay can be vetoed with scintillating foil, however, weak point: clamps, holding crystal were not completely covered with scintillator

Strategies for 2008 run:

Cover clamps with scintillating epoxy.

Implement new technique with glued thermometers for improved scintillation yield.

Background Run: Aug – Dec 2008

9 modules operated; but saw varying number of no-light events

Properties of no-light events:

Many (not all) show different pulse shape Rate decreases with time Lower rate with pure metal clamps

→ Detector effect: too hard clamping (cracks, particle-like pulses), stress relaxation (in scintillating plastic, longer pulses)

Measures taken and Status 2009

- All crystals equipped with new clamps
- thinner material → softer
- material: only bronze, no plastic coverage
- non-scintillating: need for even higher cleanliness during detector production and mounting to avoid nuclear recoil background
- New run successfully started in June 2009
- 9 detector modules operational
- Cryostat still cooling, more modules may come into transition
- Calibration run has been performed
- Background run ongoing
- Situation with no-light events unclear (need more exposure)

Scintillating Targets for Rare Event Searches

CaWO₄ – (primary CRESST material): good first choice

ZnWO₄ – (additional target): attraction: lower intrinsic radioactivity, potentially higher light yield

CaMoO₄– complementary target with 'better' quenching factor for nuclear recoils

Al₂O₃-Ti – bolometer in EDELWEISS setup

Comparison of light yields

Light Yield of a few targets is already satisfactory, further improvement possible (doping, tuning of growth condition, post-treatment)

The EURECA Collaboration

CRESST, EDELWEISS, ROSEBUD + CERN, others

United Kingdom

Oxford (H Kraus, coordinator)

Germany **—**

MPI für Physik, Munich

Technische Universität München

Universität Tübingen

Universität Karlsruhe

Forschungszentrum Karlsruhe

International

JINR Dubna **CERN**

France |

CEA/IRFU Saclay

CEA/IRAMIS Saclay

CNRS/Neel Grenoble

CNRS/CSNSM Orsay

CNRS/IPNL Lyon

CNRS/IAS Orsay

Spain

Zaragoza

Ukraine **—**

Kiev

Timeline:

2009/10: Design Study → TDR

2011/12: Digging out of LSM extension begins. In parallel, begin construction of EURECA components away from LSM. Aim for ~100kg stage (10⁻⁹ pb).

2014: LSM extension ready to receive EURECA.

2015: Begin data taking and inparallel improve and upgrade.

2018: One tonne target installed.

EURECA in LSM

Possible EURECA Facility Layout

Science Results and Aims

DATA listed top to bottom on plot
DAMA/LIBRA 2008 3sigma, no ion channeling
Edelweiss I final limit, 62 kg-days Ge 2000+2002+2003 limit
ZEPLIN II (Jan 2007) result
CRESST 2007 60 kg-day CaWO4
ZEPLIN III (Dec 2008) result
CDMS: 2004+2005 (reanalysis) +2008 Ge
XENON10 2007 (Net 136 kg-d)
Trotta et al 2008, CMSSM Bayesian: 68% contour
Trotta et al 2008, CMSSM Bayesian: 95% contour
Baltz and Gondolo 2003
Target Sensitivity Range 10-45 - 10-46 cm2

~1 evt/kg/day

~3 evt/kg/year

Aim of ton-scale experiments = ~30 evt/ton/year

